首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   2篇
数学   9篇
  2023年   1篇
  2017年   1篇
  2013年   1篇
  2010年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1997年   2篇
排序方式: 共有9条查询结果,搜索用时 778 毫秒
1
1.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   
2.
Let G be a 5‐connected triangulation of a surface Σ different from the sphere, and let be the Euler characteristic of Σ. Suppose that with even and M and N are two matchings in of sizes m and n respectively such that . It is shown that if the pairwise distance between any two elements of is at least five and the face‐width of the embedding of G in Σ is at least , then there is a perfect matching M0 in containing M such that .  相似文献   
3.
Let G be a graph and let S?V(G). We say that S is dominating in G if each vertex of G is in S or adjacent to a vertex in S. We show that every triangulation on the torus and the Klein bottle with n vertices has a dominating set of cardinality at most $\frac{n}{3}Let G be a graph and let S?V(G). We say that S is dominating in G if each vertex of G is in S or adjacent to a vertex in S. We show that every triangulation on the torus and the Klein bottle with n vertices has a dominating set of cardinality at most $\frac{n}{3}$. Moreover, we show that the same conclusion holds for a triangulation on any non‐spherical surface with sufficiently large representativity. These results generalize that for plane triangulations proved by Matheson and Tarjan (European J Combin 17 (1996), 565–568), and solve a conjecture by Plummer (Private Communication). © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 17–30, 2010  相似文献   
4.
It has been shown that every quadrangulation on any nonspherical orientable closed surface with a sufficiently large representativity has chromatic number at most 3. In this paper, we show that a quadrangulation G on a nonorientable closed surface Nk has chromatic number at least 4 if G has a cycle of odd length which cuts open Nk into an orientable surface. Moreover, we characterize the quadrangulations on the torus and the Klein bottle with chromatic number exactly 3. By our characterization, we prove that every quadrangulation on the torus with representativity at least 9 has chromatic number at most 3, and that a quadrangulation on the Klein bottle with representativity at least 7 has chromatic number at most 3 if a cycle cutting open the Klein bottle into an annulus has even length. As an application of our theory, we prove that every nonorientable closed surface Nk admits an eulerian triangulation with chromatic number at least 5 which has arbitrarily large representativity. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 100–114, 2001  相似文献   
5.
We study the existence of certain disjoint paths in planar graphs and generalize a theorem of Thomassen on planarizing cycles in surfaces. Results are used to prove that every 5-connected triangulation of a surface with sufficiently large representativity is hamiltonian, thus verifying a conjecture of Thomassen. We also obtain results about spanning walks in graphs embedded in a surface with large representativity.

  相似文献   

6.
拓扑图论中的一个基本问题就是要决定图在一个(可定向)曲面上的嵌入之数目(既嵌入的柔性问题).H.Whitney的经典结果表明:一个3-连通图至多有一个平面嵌入;C.Thomassen的LEW-嵌入(大边宽度)理论将这一结果推广到一般的可定向曲面.本文给出了几个关于一般可定向曲面上嵌入图的唯一性定理.结果表明:一些具有大的面迹的可定向嵌入仍然具有唯一性.这在本质上推广了C.Thomassen在LEW-嵌入方面的工作.  相似文献   
7.
We show that if G is a graph embedded on the projective plane in such a way that each noncontractible cycle intersects G at least n times and the embedding is minimal with respect to this property (i.e., the representativity of the embedding is n), then G can be reduced by a series of reduction operations to an n × n × n projective grid. The reduction operations consist of changing a triangle of G to a triad, changing a triad of G to a triangle, and several others. We also show that if every proper minor of the embedding has representativity < n (i.e., the embedding is minimal), then G can be obtained from an n × n × n projective grid by a series of the two reduction operations described above. Hence every minimal embedding has the same number of edges. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 153–163, 1997  相似文献   
8.
We prove that if G is a 5‐connected graph embedded on a surface Σ (other than the sphere) with face‐width at least 5, then G contains a subdivision of K5. This is a special case of a conjecture of P. Seymour, that every 5‐connected nonplanar graph contains a subdivision of K5. Moreover, we prove that if G is 6‐connected and embedded with face‐width at least 5, then for every vV(G), G contains a subdivision of K5 whose branch vertices are v and four neighbors of v.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号