首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9011篇
  免费   970篇
  国内免费   781篇
化学   642篇
晶体学   23篇
力学   903篇
综合类   157篇
数学   7290篇
物理学   1747篇
  2024年   18篇
  2023年   93篇
  2022年   136篇
  2021年   189篇
  2020年   240篇
  2019年   222篇
  2018年   245篇
  2017年   288篇
  2016年   261篇
  2015年   167篇
  2014年   331篇
  2013年   733篇
  2012年   336篇
  2011年   374篇
  2010年   354篇
  2009年   520篇
  2008年   561篇
  2007年   569篇
  2006年   557篇
  2005年   523篇
  2004年   419篇
  2003年   388篇
  2002年   442篇
  2001年   359篇
  2000年   328篇
  1999年   315篇
  1998年   267篇
  1997年   247篇
  1996年   194篇
  1995年   135篇
  1994年   135篇
  1993年   69篇
  1992年   85篇
  1991年   94篇
  1990年   59篇
  1989年   41篇
  1988年   50篇
  1987年   49篇
  1986年   43篇
  1985年   50篇
  1984年   41篇
  1983年   27篇
  1982年   33篇
  1981年   27篇
  1980年   26篇
  1979年   28篇
  1978年   23篇
  1977年   22篇
  1976年   13篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
We study the existence of a time‐periodic solution with pointwise decay properties to the Navier–Stokes equation in the whole space. We show that if the time‐periodic external force is sufficiently small in an appropriate sense, then there exists a time‐periodic solution { u , p } of the Navier–Stokes equation such that | ? j u ( t , x ) | = O ( | x | 1 ? n ? j ) and | ? j p ( t , x ) | = O ( | x | ? n ? j ) ( j = 0 , 1 , ) uniformly in t R as | x | . Our solution decays faster than the time‐periodic Stokes fundamental solution and the faster decay of its spatial derivatives of higher order is also described.  相似文献   
2.
3.
ABSTRACT

The Coupled-Cluster (CC) theory is one of the most successful high precision methods used to solve the stationary Schrödinger equation. In this article, we address the mathematical foundation of this theory with focus on the advances made in the past decade. Rather than solely relying on spectral gap assumptions (non-degeneracy of the ground state), we highlight the importance of coercivity assumptions – Gårding type inequalities – for the local uniqueness of the CC solution. Based on local strong monotonicity, different sufficient conditions for a local unique solution are suggested. One of the criteria assumes the relative smallness of the total cluster amplitudes (after possibly removing the single amplitudes) compared to the Gårding constants. In the extended CC theory the Lagrange multipliers are wave function parameters and, by means of the bivariational principle, we here derive a connection between the exact cluster amplitudes and the Lagrange multipliers. This relation might prove useful when determining the quality of a CC solution. Furthermore, the use of an Aubin–Nitsche duality type method in different CC approaches is discussed and contrasted with the bivariational principle.  相似文献   
4.
We extend our previous results characterizing the loading properties of a diffusing passive scalar advected by a laminar shear flow in ducts and channels to more general cross‐sectional shapes, including regular polygons and smoothed corner ducts originating from deformations of ellipses. For the case of the triangle and localized, cross‐wise uniform initial distributions, short‐time skewness is calculated exactly to be positive, while long‐time asymptotics shows it to be negative. Monte Carlo simulations confirm these predictions, and document the timescale for sign change. The equilateral triangle appears to be the only regular polygon with this property—all others possess positive skewness at all times. Alternatively, closed‐form flow solutions can be constructed for smooth deformations of ellipses, and illustrate how both nonzero short‐time skewness and the possibility of multiple sign switching in time is unrelated to domain corners. Exact conditions relating the median and the skewness to the mean are developed which guarantee when the sign for the skewness implies front (more mass to the right of the mean) or back (more mass to the left of the mean) “loading” properties of the evolving tracer distribution along the pipe. Short‐ and long‐time asymptotics confirm this condition, and Monte Carlo simulations verify this at all times. The simulations are also used to examine the role of corners and boundaries on the distribution for short‐time evolution of point source , as opposed to cross‐wise uniform, initial data.  相似文献   
5.
In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these methods. More precisely, in our framework, we first show that (i) the sequences generated by Primal–Dual splitting methods identify a pair of primal and dual smooth manifolds in a finite number of iterations, and then (ii) enter a local linear convergence regime, which is characterized based on the structure of the underlying active smooth manifolds. We also show how our results for Primal–Dual splitting can be specialized to cover existing ones on Forward–Backward splitting and Douglas–Rachford splitting/ADMM (alternating direction methods of multipliers). Moreover, based on these obtained local convergence analysis result, several practical acceleration techniques are discussed. To exemplify the usefulness of the obtained result, we consider several concrete numerical experiments arising from fields including signal/image processing, inverse problems and machine learning. The demonstration not only verifies the local linear convergence behaviour of Primal–Dual splitting methods, but also the insights on how to accelerate them in practice.  相似文献   
6.
7.
8.
Abstract

Realistic stochastic modeling is increasingly requiring the use of bounded noises. In this work, properties and relationships of commonly employed bounded stochastic processes are investigated within a solid mathematical ground. Four families are object of investigation: the Sine-Wiener (SW), the Doering–Cai–Lin (DCL), the Tsallis–Stariolo–Borland (TSB), and the Kessler–Sørensen (KS) families. We address mathematical questions on existence and uniqueness of the processes defined through Stochastic Differential Equations, which often conceal non-obvious behavior, and we explore the behavior of the solutions near the boundaries of the state space. The expression of the time-dependent probability density of the Sine-Wiener noise is provided in closed form, and a close connection with the Doering–Cai–Lin noise is shown. Further relationships among the different families are explored, pathwise and in distribution. Finally, we illustrate an analogy between the Kessler–Sørensen family and Bessel processes, which allows to relate the respective local times at the boundaries.  相似文献   
9.
A fundamental question in random matrix theory is to quantify the optimal rate of convergence to universal laws. We take up this problem for the Laguerre β ensemble, characterized by the Dyson parameter β, and the Laguerre weight , in the hard edge limit. The latter relates to the eigenvalues in the vicinity of the origin in the scaled variable . Previous work has established the corresponding functional form of various statistical quantities—for example, the distribution of the smallest eigenvalue, provided that . We show, using the theory of multidimensional hypergeometric functions based on Jack polynomials, that with the modified hard edge scaling , the rate of convergence to the limiting distribution is , which is optimal. In the case , general the explicit functional form of the distribution of the smallest eigenvalue at this order can be computed, as it can for and general . An iterative scheme is presented to numerically approximate the functional form for general .  相似文献   
10.
In this paper, we give some sufficient conditions for the local uniqueness of solutions to nonsmooth variational inequalities where the underlying functions are H-differentiable and the underlying set is a closed convex set/polyhedral set/box/polyhedral cone. We show how the solution of a linearized variational inequality is related to the solution of the variational inequality. These results extend/unify various similar results proved for C 1 and locally Lipschitzian variational inequality problems. When specialized to the nonlinear complementarity problem, our results extend/unify those of C 2 and C 1 nonlinear complementarity problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号