首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
化学   1篇
数学   1篇
  2000年   1篇
  1989年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

A lacuna of a linear hyperbolic differential operator is a domain inside its propagation cone where a proper fundamental solution vanishes identically. Huygens' principle for the classical wave equation is the simplest important example of such a phenomenon. The study of lacunas for hyperbolic equations of arbitrary order was initiated by I. G. Petrovsky (1945). Extending and clarifying his results, Atiyah, Bott and Gårding (1970-73) developed a profound and complete theory for hyperbolic operators with constant coefficients. In contrast, much less is known about lacunas for operators with variable coefficients. In the present paper we study this problem for one remarkable class of partial differential operators with singular coefficients. These operators stem from the theory of special functions in several variables related to finite root systems (Coxeter groups). The underlying algebraic structure makes it possible to extend many results of the Atiyah-Bott-Gårding theory. We give a generalization of the classical Herglotz-Petrovsky-Leray formulas expressing the fundamental solution in terms of Abelian integrals over properly constructed cycles in complex projective space. Such a representation allows us to employ the Petrovsky topological condition for testing regular (strong) lacunas for the operators under consideration. Some illustrative examples are constructed. A relation between the theory of lacunas and the problem of classification of commutative rings of partial differential operators is discussed.

  相似文献   

2.
Early attention to the modeling of heme proteins is enhancing the understanding of biochemistry. Those studies are also contributing to the development of techniques for the modeling of still more intricate, multifunctional, variously selective natural systems. Selectivity in simple systems may involve the molecular capability to bind only one of a family of related species or it may mean the ability to select and control one of a number of possible functions of a given bound species. Complicated systems simultaneously combine the two kinds of simple selectivities for two or more different classes of guest, often with synergistic interrelationships. The subject is developed around examples of binary, tertiary, and quarternary complexes designed to model the behavior of monooxygenases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号