首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
数学   1篇
  2015年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Artificial, neurobiological, and social networks are three distinct complex adaptive systems (CASs), each containing discrete processing units (nodes, neurons, and humans, respectively). Despite the apparent differences, these three networks are bound by common underlying principles which describe the behavior of the system in terms of the connections of its components, and its emergent properties. The longevity (long‐term retention and functionality) of the components of each of these systems is also defined by common principles. Here, I will examine some properties of the longevity and function of the components of artificial and neurobiological systems, and generalize these to the longevity and function of the components of social CAS. In other words, I will show that principles governing the long‐term functionality of computer nodes and of neurons, may be extrapolated to the study of the long‐term functionality of humans (or more precisely, of the noemes, an abstract combination of “existence” and “digital fame”). The study of these phenomena can provide useful insights regarding practical ways that can be used to maximize human longevity. The basic law governing these behaviors is the “Law of Requisite Usefulness,” which states that the length of retention of an agent within a CAS is proportional to the agent's contribution to the overall adaptability of the system. © 2014 Wiley Periodicals, Inc. Complexity 20: 15–24, 2015  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号