首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2216篇
  免费   348篇
  国内免费   76篇
化学   261篇
晶体学   16篇
力学   850篇
综合类   31篇
数学   728篇
物理学   754篇
  2024年   3篇
  2023年   34篇
  2022年   40篇
  2021年   53篇
  2020年   80篇
  2019年   64篇
  2018年   55篇
  2017年   78篇
  2016年   104篇
  2015年   80篇
  2014年   107篇
  2013年   170篇
  2012年   108篇
  2011年   144篇
  2010年   121篇
  2009年   134篇
  2008年   133篇
  2007年   129篇
  2006年   123篇
  2005年   92篇
  2004年   103篇
  2003年   82篇
  2002年   96篇
  2001年   70篇
  2000年   63篇
  1999年   46篇
  1998年   48篇
  1997年   54篇
  1996年   38篇
  1995年   26篇
  1994年   22篇
  1993年   28篇
  1992年   29篇
  1991年   21篇
  1990年   12篇
  1989年   5篇
  1988年   9篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1978年   2篇
  1977年   1篇
排序方式: 共有2640条查询结果,搜索用时 15 毫秒
1.
An efficient edge based data structure has been developed in order to implement an unstructured vertex based finite volume algorithm for the Reynolds-averaged Navier–Stokes equations on hybrid meshes. In the present approach, the data structure is tailored to meet the requirements of the vertex based algorithm by considering data access patterns and cache efficiency. The required data are packed and allocated in a way that they are close to each other in the physical memory. Therefore, the proposed data structure increases cache performance and improves computation time. As a result, the explicit flow solver indicates a significant speed up compared to other open-source solvers in terms of CPU time. A fully implicit version has also been implemented based on the PETSc library in order to improve the robustness of the algorithm. The resulting algebraic equations due to the compressible Navier–Stokes and the one equation Spalart–Allmaras turbulence equations are solved in a monolithic manner using the restricted additive Schwarz preconditioner combined with the FGMRES Krylov subspace algorithm. In order to further improve the computational accuracy, the multiscale metric based anisotropic mesh refinement library PyAMG is used for mesh adaptation. The numerical algorithm is validated for the classical benchmark problems such as the transonic turbulent flow around a supercritical RAE2822 airfoil and DLR-F6 wing-body-nacelle-pylon configuration. The efficiency of the data structure is demonstrated by achieving up to an order of magnitude speed up in CPU times.  相似文献   
2.
3.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
4.
We discuss an error estimation procedure for the global error of collocation schemes applied to solve singular boundary value problems with a singularity of the first kind. This a posteriori estimate of the global error was proposed by Stetter in 1978 and is based on the idea of Defect Correction, originally due to Zadunaisky. Here, we present a new, carefully designed modification of this error estimate which not only results in less computational work but also appears to perform satisfactorily for singular problems. We give a full analytical justification for the asymptotical correctness of the error estimate when it is applied to a general nonlinear regular problem. For the singular case, we are presently only able to provide computational evidence for the full convergence order, the related analysis is still work in progress. This global estimate is the basis for a grid selection routine in which the grid is modified with the aim to equidistribute the global error. This procedure yields meshes suitable for an efficient numerical solution. Most importantly, we observe that the grid is refined in a way reflecting only the behavior of the solution and remains unaffected by the unsmooth direction field close to the singular point.  相似文献   
5.
Several promising approaches for hexahedral mesh generation work as follows: Given a prescribed quadrilateral surface mesh they first build the combinatorial dual of the hexahedral mesh. This dual mesh is converted into the primal hexahedral mesh, and finally embedded and smoothed into the given domain. Two such approaches, the modified whisker weaving algorithm by Folwell and Mitchell, as well as a method proposed by the author, rely on an iterative elimination of certain dual cycles in the surface mesh. An intuitive interpretation of the latter method is that cycle eliminations correspond to complete sheets of hexahedra in the volume mesh.

Although these methods can be shown to work in principle, the quality of the generated meshes heavily relies on the dual cycle structure of the given surface mesh. In particular, it seems that difficulties in the hexahedral meshing process and poor mesh qualities are often due to self-intersecting dual cycles. Unfortunately, all previous work on quadrilateral surface mesh generation has focused on quality issues of the surface mesh alone but has disregarded its suitability for a high-quality extension to a three-dimensional mesh.

In this paper, we develop a new method to generate quadrilateral surface meshes without self-intersecting dual cycles. This method reuses previous b-matching problem formulations of the quadrilateral mesh refinement problem. The key insight is that the b-matching solution can be decomposed into a collection of simple cycles and paths of multiplicity two, and that these cycles and paths can be consistently embedded into the dual surface mesh.

A second tool uses recursive splitting of components into simpler subcomponents by insertion of internal two-manifolds. We show that such a two-manifold can be meshed with quadrilaterals such that the induced dual cycle structure of each subcomponent is free of self-intersections if the original component satisfies this property. Experiments show that we can achieve hexahedral meshes with a good quality.  相似文献   

6.
考虑一个奇异摄动罗宾问题在Bakhvalov-Shishkin网格上的迎风差分策略,得到在改进的Shishkin网格上迎风策略是关于ε一致的一阶L∞模收敛的.数值实验证实了此理论结果,显示估计是稳健的.  相似文献   
7.
The transport of monodisperse as well as polydisperse colloid suspensions in a two-dimensional, water saturated fracture with spatially variable and anisotropic aperture is investigated with a particle tracking model. Both neutrally buoyant and dense colloid suspensions are considered. Although flow and transport in fractured subsurface formations have been studied extensively by numerous investigators, the transport of dense, polydisperse colloid suspensions in a fracture with spatially variable and anisotropic aperture has not been previously explored. Simulated snapshots and breakthrough curves of ensemble averages of several realizations of a log-normally distributed aperture field show that polydisperse colloids exhibit greater spreading than monodisperse colloids, and dense colloids show greater retardation than neutrally buoyant colloids. Moreover, it is demonstrated that aperture anisotropy oriented along the flow direction substantially increases colloid spreading; whereas, aperture anisotropy oriented transverse to the flow direction retards colloid movement.  相似文献   
8.
Oracle inequality is a relatively new statistical tool for the analysis of nonparametric adaptive estimates. Oracle is a good pseudo-estimate that is based on both data and an underlying estimated curve. An oracle inequality shows how well an adaptive estimator mimics the oracle for a particular underlying curve. The most advanced oracle inequalities have been recently obtained by Cavalier and Tsybakov (2001) for Stein type blockwise estimates used in filtering a signal from a stationary white Gaussian process. The authors also conjecture that a similar result can be obtained for Efromovich–Pinsker (EP) type blockwise estimators where their approach, based on Stein's formula for risk calculation, does not work. This article proves the conjecture and extends it upon more general models which include not stationary and dependent processes. Other possible extensions, a discussion of practical implications and a numerical study are also presented.  相似文献   
9.
A parallel DSMC method based on a cell‐based data structure is developed for the efficient simulation of rarefied gas flows on PC‐clusters. Parallel computation is made by decomposing the computational domain into several subdomains. Dynamic load balancing between processors is achieved based on the number of simulation particles and the number of cells allocated in each subdomain. Adjustment of cell size is also made through mesh adaptation for the improvement of solution accuracy and the efficient usage of meshes. Applications were made for a two‐dimensional supersonic leading‐edge flow, the axi‐symmetric Rothe's nozzle, and the open hollow cylinder flare flow for validation. It was found that the present method is an efficient tool for the simulation of rarefied gas flows on PC‐based parallel machines. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
10.
This study is concerned with the temperature and molecular weight dependence of the strain-hardening behavior of polycarbonate. It is shown that the strain-hardening modulus reduces with increasing temperature and decreasing molecular weight. This result is interpreted in terms of temperature accelerated relaxation of the entanglement network. Moreover, it is shown that frozen-in orientations, induced by homogeneous deformations above the glass transition temperature, lead to anisotropic yield behavior that can be fully rationalized (and modelled) in terms of a superimposed stress contribution of the prestrained network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2041–2049, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号