首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   8篇
力学   112篇
数学   10篇
物理学   24篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   6篇
  2018年   2篇
  2017年   7篇
  2016年   6篇
  2015年   5篇
  2014年   9篇
  2013年   27篇
  2012年   7篇
  2011年   9篇
  2010年   6篇
  2009年   8篇
  2008年   7篇
  2007年   10篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1993年   2篇
  1957年   1篇
排序方式: 共有146条查询结果,搜索用时 46 毫秒
1.
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
In this work, various turbulent solutions of the two‐dimensional (2D) and three‐dimensional compressible Reynolds averaged Navier–Stokes equations are analyzed using global stability theory. This analysis is motivated by the onset of flow unsteadiness (Hopf bifurcation) for transonic buffet conditions where moderately high Reynolds numbers and compressible effects must be considered. The buffet phenomenon involves a complex interaction between the separated flow and a shock wave. The efficient numerical methodology presented in this paper predicts the critical parameters, namely, the angle of attack and Mach and Reynolds numbers beyond which the onset of flow unsteadiness appears. The geometry, a NACA0012 profile, and flow parameters selected reproduce situations of practical interest for aeronautical applications. The numerical computation is performed in three steps. First, a steady baseflow solution is obtained; second, the Jacobian matrix for the RANS equations based on a finite volume discretization is computed; and finally, the generalized eigenvalue problem is derived when the baseflow is linearly perturbed. The methodology is validated predicting the 2D Hopf bifurcation for a circular cylinder under laminar flow condition. This benchmark shows good agreement with the previous published computations and experimental data. In the transonic buffet case, the baseflow is computed using the Spalart–Allmaras turbulence model and represents a mean flow where the high frequency content and length scales of the order of the shear‐layer thickness have been averaged. The lower frequency content is assumed to be decoupled from the high frequencies, thus allowing a stability analysis to be performed on the low frequency range. In addition, results of the corresponding adjoint problem and the sensitivity map are provided for the first time for the buffet problem. Finally, an extruded three‐dimensional geometry of the NACA0012 airfoil, where all velocity components are considered, was also analyzed as a Triglobal stability case, and the outcoming results were compared to the previous 2D limited model, confirming that the buffet onset is well detected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
In this paper, the efficient application of high‐order weighted essentially nonoscillatory (WENO) reconstruction to the subsonic and transonic engineering problems is studied. On the basis of the physical considerations, two techniques are proposed to enhance the accuracy and efficiency of the WENO reconstruction. First, it is observed that the WENO scheme using characteristic variable has better accuracy and convergence speed than the scheme using primitive variable. For engineering problems with shock of moderate amplitude, on the basis of the Rankine–Hugoniot conditions, a simplified characteristic‐variable‐based WENO is developed. The simplified version significantly reduces the cost overhead without sacrificing the shock‐capturing capability. Second, in this work, it is found for viscous case that it is better to include the viscous effect. On the basis of a simple analysis, the viscous correction to the parameter ε in the WENO reconstruction is proposed. Numerical results indicate, with the proposed simplified characteristic‐variable‐based reconstruction and the viscous correction, that the nonlinear WENO interpolation is sharply activated in the region of shock jump, whereas in the shockless area, the WENO interpolation weights are tuned towards the designed optimal value for better accuracy. Compared with the original characteristic‐variable‐based WENO, the current implementation has similar accuracy and reduced cost. At the same time, compared with the primitive variable‐based WENO, better accuracy and convergence speed are obtained at marginal cost overhead. Several practical cases are calculated to demonstrate the accuracy and efficiency of the current methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
The present paper investigates the multigrid (MG) acceleration of compressible Reynolds‐averaged Navier–Stokes computations using Reynolds‐stress model 7‐equation turbulence closures, as well as lower‐level 2‐equation models. The basic single‐grid SG algorithm combines upwind‐biased discretization with a subiterative local‐dual‐time‐stepping time‐integration procedure. MG acceleration, using characteristic MG restriction and prolongation operators, is applied on meanflow variables only (MF–MG), turbulence variables being simply injected onto coarser grids. A previously developed non‐time‐consistent (for steady flows) full‐approximation‐multigrid (s–MG) is assessed for 3‐D anisotropy‐driven and/or separated flows, which are dominated by the convergence of turbulence variables. Even for these difficult test cases CPU‐speed‐ups rCPUSUP∈[3, 5] are obtained. Alternative, potentially time‐consistent approaches (unsteady u–MG), where MG acceleration is applied at each subiteration, are also examined, using different subiterative strategies, MG cycles, and turbulence models. For 2‐D shock wave/turbulent boundary layer interaction, the fastest s–MG approach, with a V(2, 0) sawtooth cycle, systematically yields CPU‐speed‐ups of 5±½, quasi‐independent of the particular turbulence closure used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
5.
The present paper focuses on the analysis of two- and three-dimensional flow past a circular cylinder in different laminar flow regimes. In this simulation, an implicit pressure-based finite volume method is used for time-accurate computation of incompressible flow using second order accurate convective flux discretisation schemes. The computation results are validated against measurement data for mean surface pressure, skin friction coefficients, the size and strength of the recirculating wake for the steady flow regime and also for the Strouhal frequency of vortex shedding and the mean and RMS amplitude of the fluctuating aerodynamic coefficients for the unsteady periodic flow regime. The complex three dimensional flow structure of the cylinder wake is also reasonably captured by the present prediction procedure.  相似文献   
6.
A verification and validation procedure for yacht sail aerodynamics is presented. Guidelines and an example of application are provided. The grid uncertainty for the aerodynamic lift, drag and pressure distributions for the sails is computed. The pressures are validated against experimental measurements, showing that the validation procedure may allow the identification of modelling errors. Lift, drag and L2 norm of the pressures were computed with uncertainties of the order of 1%. Convergence uncertainty and round‐off uncertainty are several orders of magnitude smaller than the grid uncertainty. The uncertainty due to the dimension of the computational domain is computed for a flat plate at incidence and is found to be significant compared with the other uncertainties. Finally, it is shown how the probability that the ranking between different geometries is correct can be estimated knowing the uncertainty in the computation of the value used to rank. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
This contribution is aimed at analyzing the capabilities of popular two-equation turbulence models to predict features of 3D flow fields and endwall heat transfer near the blunt edge of a symmetric body mounted on a plate. The configuration studied experimentally by Praisner and Smith is considered. Results obtained with the in-house CFD code SINF and the commercial package ANSYS–CFX are presented and compared. Prediction capabilities of the low-Re Wilcox turbulence model and two versions of the Menter SST model, the original and the modified one, are analyzed in comparison with the experimental data. Special attention is paid to grid sensitivity of the numerical solutions. Advanced visualization of the vortex structures computed is performed with author’s visualization tool HDVIS. It has been established that the Wilcox model is not capable of predicting the development of a multiple-vortex system observed in the experiment upstream of the body leading edge. Both versions of the MSST model produce qualitatively correct results, with a considerable superiority of the modified version when compared with the quantitative data.  相似文献   
8.
本文将汽车绕流模块化为各典型局部流动,通过常用湍流模型对各典型局部流动进行数值模拟,结果验证了湍流模型对转捩的捕捉能力是准确模拟汽车绕流的关键. 在分析汽车绕流分离及转捩机理的基础上,优化了稳态和瞬态求解方法,改进了湍流模型对转捩的预测能力,进而提高了湍流模型在汽车流场模拟上的精度. 针对汽车绕流的稳态问题,将流线曲率因子及 响应阈值引入 LRN $k$-$\varepsilon $ (low Reynolds number $k$-$\varepsilon $) 模型,获得了一种能够更准确预 测转捩的改进低雷诺数湍流模型 (modified LRN $k$-$\varepsilon $),改善了原模型对湍流耗散率的过强依赖性及全应力发展预测不足等问题;针对汽车绕流瞬态求解,通过分析 RANS/LES 混合湍流模型的构造思想及特点,引入约束大涡模拟方法,结合本文提出的改进的 LRN $k$-$\varepsilon $ 湍流模型,提出了一种能准确捕捉转捩现象 的转捩 LRN CLES 模型. 分别将改进的模型用于某实车外流场和风振噪声仿真中,通过 Ansys Fluent 求解器计算,并将计算结果与常用湍流模型的仿真结果、HD-2 风洞试验结果和实车道路实验结果进行对比,表明改进后的湍流模型能够更准确模拟复杂实车的稳态和瞬态特性,为汽车气动特性的研究提供了可靠理论依据及有效数值解决方法.  相似文献   
9.
Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of massive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel to the wall Δ becomes less than the boundary-layer thickness δ, either through grid refinement or boundary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch (and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.For some research studies in small domains, Δ is made much smaller than δ, and LES content is generated intentionally. However for natural DES applications in useful domains, it is preferable to over-ride the DES limiter and maintain RANS behavior in boundary layers, independent of Δ relative to δ. For this purpose, a new version of the technique – referred to as DDES, for Delayed DES – is presented which is based on a simple modification to DES97, similar to one proposed by Menter and Kuntz for the shear–stress transport (SST) model, but applicable to other models. Tests in boundary layers, on a single and a multi-element airfoil, a cylinder, and a backward-facing step demonstrate that RANS function is indeed maintained in thick boundary layers, without preventing LES function after massive separation. The new formulation better fulfills the intent of DES. Two other issues are discussed: the use of DES as a wall model in LES of attached flows, in which the known log-layer mismatch is not resolved by DDES; and a correction that is helpful at low cell Reynolds numbers.  相似文献   
10.
A model for premixed turbulent combustion is investigated using a RANS-approach. The evolution of the flame front is described in terms of the G-equation. The numerical instabilities of the G-field are resolved using a reinitialisation procedure. For the G-points near the flame surface an algorithm proposed by Russo and Smereka [1] and modificated by Düsing [2] is presented. For all other points the standard Sussman algorithm is employed. Fluid properties are conditioned on the flame front position using a burnt-unburnt probability function across the flame front. Computations are performed using the code FASTEST-3D [3] which is a flow solver for a non-orthogonal, block-structured grid. The computational examples include two test cases, the first containing the propagation of two circular merging flames and the second one containing the simulation of the ORACLES-burner [4].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号