首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
数学   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Strongly polynomial dual simplex methods for the maximum flow problem   总被引:1,自引:0,他引:1  
This paper presents dual network simplex algorithms that require at most 2nm pivots and O(n 2 m) time for solving a maximum flow problem on a network ofn nodes andm arcs. Refined implementations of these algorithms and a related simplex variant that is not strictly speaking a dual simplex algorithm are shown to have a complexity of O(n 3). The algorithms are based on the concept of apreflow and depend upon the use of node labels that are underestimates of the distances from the nodes to the sink node in the extended residual graph associated with the current flow. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Research was supported by NSF Grants DMS 91-06195, DMS 94-14438 and CDR 84-21402 and DOE Grant DE-FG02-92ER25126.Research was supported by NSF Grant CDR 84-21402 at Columbia University.  相似文献   
2.
Several pivot rules for the dual network simplex algorithm that enable it to solve a maximum flow problem on ann-node,m-arc network in at most 2nm pivots and O(n 2 m) time are presented. These rules are based on the concept of apreflow and depend upon the use of node labels which are either the lengths of a shortestpseudoaugmenting path from those nodes to the sink node orvalid underestimates of those lengths. Extended versions of our algorithms are shown to solve an important class of parametric maximum flow problems with no increase in the worst-case pivot and time bounds of these algorithms. This research was supported in part by NSF Grants DMS 91-06195, DMS 94-14438, and CDR 84-21402 and DOE Grant DE-FG02-92ER25126.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号