首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
数学   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
What does regressing Y on X versus regressing X on Y have to do with Markov chain Monte Carlo (MCMC)? It turns out that many strategies for speeding up data augmentation (DA) type algorithms can be understood as fostering independence or “de-correlation” between a regression function and the corresponding residual, thereby reducing or even eliminating dependence among MCMC iterates. There are two general classes of algorithms, those corresponding to regressing parameters on augmented data/auxiliary variables and those that operate the other way around. The interweaving strategy of Yu and Meng provides a general recipe to automatically take advantage of both, and it is the existence of two different types of residuals that makes the interweaving strategy seemingly magical in some cases and promising in general. The concept of residuals—which depends on actual data—also highlights the potential for substantial improvements when DA schemes are allowed to depend on the observed data. At the same time, there is an intriguing phase transition type of phenomenon regarding choosing (partially) residual augmentation schemes, reminding us once more of the prevailing issue of trade-off between robustness and efficiency. This article reports on these latest theoretical investigations (using a class of normal/independence models) and empirical findings (using a posterior sampling for a probit regression) in the search for effective residual augmentations—and ultimately more MCMC algorithms—that meet the 3-S criterion: simple, stable, and speedy. Supplementary materials for the article are available online.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号