首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   42篇
  国内免费   2篇
化学   4篇
晶体学   1篇
力学   114篇
数学   409篇
物理学   26篇
  2024年   4篇
  2023年   35篇
  2022年   9篇
  2021年   24篇
  2020年   26篇
  2019年   48篇
  2018年   65篇
  2017年   37篇
  2016年   32篇
  2015年   29篇
  2014年   15篇
  2013年   102篇
  2012年   14篇
  2011年   10篇
  2010年   10篇
  2009年   9篇
  2008年   10篇
  2007年   4篇
  2006年   8篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1991年   3篇
  1985年   1篇
  1978年   1篇
排序方式: 共有554条查询结果,搜索用时 15 毫秒
1.
This article focuses on discontinuous Galerkin method for the two‐ or three‐dimensional stationary incompressible Navier‐Stokes equations. The velocity field is approximated by discontinuous locally solenoidal finite element, and the pressure is approximated by the standard conforming finite element. Then, superconvergence of nonconforming finite element approximations is applied by using least‐squares surface fitting for the stationary Navier‐Stokes equations. The method ameliorates the two noticeable disadvantages about the given finite element pair. Finally, the superconvergence result is provided under some regular assumptions. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 421–436, 2007  相似文献   
2.
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
An investigation is made of the performance of algebraic multigrid (AMG) solvers for the discrete Stokes problem. The saddle‐point formulations are based on the direct enforcement of the fundamental conservation laws in discrete spaces and subsequently stabilised with the aid of a regular splitting of the diffusion operator. AMG solvers based on an independent coarsening of the fields (the unknown approach) and also on a common coarsening (the point approach) are investigated. Both mixed‐order and equal‐order interpolations are considered. The dependence of convergence on the ‘degree of coarsening’ is investigated by studying the ‘convergence versus coarsening’ characteristics and their variation with mesh resolution. They show a consistency in shape, which reveals two distinct performance zones, one convergent the other divergent. The transition from the convergent to the divergent zones is discontinuous and occurs at a critical coarsening factor that is largely mesh independent. It signals a breakdown in the stability of the smoothing at the coarser levels of coarse grid approximation. It is shown that the previously observed, mesh‐dependent, scaling of convergence factors, which had suggested inconsistencies in the coarse grid approximation, is not a reliable marker of inconsistency. It is an indirect consequence of the breakdown in the stability of smoothing. For stable smoothing, reduction factors are shown to be largely mesh independent. The ability of mixed‐order interpolation to permit stable smoothing and therefore to deliver mesh‐independent convergence is explained. Two expedient options are suggested for obtaining mesh‐independent convergence for those AMG codes that are based on an equal‐order interpolation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
The effect of magnetic field strength and orientation on two types of electromagnetically influenced turbulent flows was studied numerically under the Reynolds averaged Navier–Stokes (RANS) framework. Previous work (Wilson et al., 2014) used an electromagnetically extended linear eddy-viscosity model, whilst the current paper focuses on the performance of a more advanced Reynolds stress transport type model both with and without electromagnetic modifications proposed by Kenjereš et al. (2004). First, a fully-developed 2D channel flow is considered with a magnetic field imposed in either the wall-normal or streamwise direction. Both forms of the RSM gave good agreement with the DNS data for the wall-normal magnetic field across the range of Hartmann numbers with the additional electromagnetic terms providing a small, but noticeable, difference. For the streamwise magnetic field, where electromagnetic influence is only through the turbulence, the electromagnetically extended RSM performed well at moderate Hartmann numbers but returned laminar flow at the highest Hartmann number considered, contrary to the DNS. The RSM results were, however, significantly better than the previous eddy-viscosity model predictions. The second case is that of unsteady 3D Rayleigh–Bénard convection with a magnetic field imposed in either a horizontal or vertical direction. Results revealed that a significant reorganization of the flow structures is predicted to occur. For a vertically oriented magnetic field, the plume structures increase in number and become thinner and elongated along the magnetic field lines, leading to an increase in thermal mixing within the core in agreement with Hanjalić and Kenjereš (2000). With a horizontal magnetic field, the structures become two-dimensional and a striking realignment of the roll cells’ axes with the magnetic field lines occurs. The results demonstrate the capability of the Reynolds stress transport approach in modelling MHD flows that are relevant to industry and offer potential for those wishing to control levels of turbulence, heat transfer or concentration without recourse to mechanical means.  相似文献   
5.
We consider uniform stability to a nontrivial equilibrium of a nonlinear fluid–structure interaction (FSI) defined on a two or three dimensional bounded domain. Stabilization is achieved via boundary and/or interior feedback controls implemented on both the fluid and the structure. The interior damping on the fluid combining with the viscosity effect stabilizes the dynamics of fluid. However, this dissipation propagated from the fluid alone is not sufficient to drive uniformly to equilibrium the entire coupled system. Therefore, additional interior damping on the wave component or boundary porous like damping on the interface is considered. A geometric condition on the interface is needed if only boundary damping on the wave is active. The main technical difficulty is the mismatch of regularity of hyperbolic and parabolic component of the coupled system. This is overcome by considering special multipliers constructed from Stokes solvers. The uniform stabilization result obtained in this article is global for the fully coupled FSI model.  相似文献   
6.
Stabilised mixed velocity–pressure formulations are one of the widely-used finite element schemes for computing the numerical solutions of laminar incompressible Navier–Stokes. In these formulations, the Newton–Raphson scheme is employed to solve the nonlinearity in the convection term. One fundamental issue with this approach is the computational cost incurred in the Newton–Raphson iterations at every load/time step. In this paper, we present an iteration-free mixed finite element formulation for incompressible Navier–Stokes that preserves second-order temporal accuracy of the generalised-alpha and related schemes for both velocity and pressure fields. First, we demonstrate the second-order temporal accuracy using numerical convergence studies for an example with a manufactured solution. Later, we assess the accuracy and the computational benefits of the proposed scheme by studying the benchmark example of flow past a fixed circular cylinder. Towards showcasing the applicability of the proposed technique in a wider context, the inf–sup stable P2–P1 pair for the formulation without stabilisation is also considered. Finally, the resulting benefits of using the proposed scheme for fluid–structure interaction problems are illustrated using two benchmark examples in fluid-flexible structure interaction.  相似文献   
7.
This paper uses the four-variable refined plate theory (RPT) for the free vibration analysis of functionally graded material (FGM) sandwich rectangular plates.Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theory presented is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM facesheet and the homogeneous core and the sandwich with the homogeneous facesheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. The validity of the theory is shown by comparing the present results with those of the classical, the first-order, and the other higher-ordex theories. The proposed theory is accurate and simple in solving the free vibration behavior of the FGM sandwich plates.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号