首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
力学   15篇
数学   4篇
物理学   6篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有25条查询结果,搜索用时 593 毫秒
1.
针对航天器真空热试验对数据采集、温度控制及系统功能的要求,设计开发了一套基于LXI总线的分布式测控系统。针对目前控制系统对于温度控制系统大滞后、非线性的控制性能不佳的缺点,采用模糊自整定PID算法提升了当前控制系统的控制品质,实现了对航天器的外热流模拟与温度控制。实际运行结果表明,该系统具有可靠性高、扩展性强、控制精度高等优点,并且试验准备时间比原有系统减少一半以上,提高了试验人员的工作效率。  相似文献   
2.
载人航天器乘员舱内人-机界面的工效学评价是决定能否进行载人空间飞行的重要依据之一,由于人-机界面本身的复杂性,使得对其评价有一定的难度。本文在模糊理论的基础上,首先对舱内人-机界面工效学评价各参数进行随机模糊分析,据此建立工效学模糊综合评价模型,最后进行了实例研究。结果表明,对于同一个评价对象,应用该方法更能接近实际。  相似文献   
3.
Many space mission planning problems may be formulated as hybrid optimal control problems, i.e. problems that include both continuous-valued variables and categorical (binary) variables. There may be thousands to millions of possible solutions; a current practice is to pre-prune the categorical state space to limit the number of possible missions to a number that may be evaluated via total enumeration. Of course this risks pruning away the optimal solution. The method developed here avoids the need for pre-pruning by incorporating a new solution approach using nested genetic algorithms; an outer-loop genetic algorithm that optimizes the categorical variable sequence and an inner-loop genetic algorithm that can use either a shape-based approximation or a Lambert problem solver to quickly locate near-optimal solutions and return the cost to the outer-loop genetic algorithm. This solution technique is tested on three asteroid tour missions of increasing complexity and is shown to yield near-optimal, and possibly optimal, missions in many fewer evaluations than total enumeration would require.  相似文献   
4.
The attitude dynamics of a dual-spin spacecraft (a gyrostat with one rotor) with magnetic actuators attitude control is considered in the constant external magnetic field at the presence of the spacecraft’s own magnetic dipole moment, which is created proportionally to the angular velocity components (this motion regime can be called as “the omega-regime” or “the omega-maneuver”). The research of the dual-spin spacecraft angular motion under the action of the magnetic restoring torque is fulfilled in the generalized formulation close to the classical mechanics’ task of the heavy body/gyrostat motion in the Lagrange top. Analytical exact solutions of differential equations of the motion are obtained for all parameters in terms of elliptic integrals and the Jacobi functions. New obtained analytical solutions can be classified as results developing the classical fundamental problem of the rigid body and gyrostat motion around the fixed point. The technical application of the omega-regime to the angular reorientation of the spacecraft longitudinal axis along the angular momentum vector is considered.  相似文献   
5.
In this paper linear and nonlinear models of spacecraft attitude dynamics equations and gravity gradient moments are investigated. In addition, effects of gravity gradient moments on attitude dynamics of the satellite are studied. The purpose of this paper is to present a comparison between nonlinear and linear models of spacecraft attitude dynamics and gravity gradient moments in order to determine divergence of linear approximation from the nonlinear model. Simulation results indicate that designer of spacecraft attitude control subsystem should be meticulous in applying linear approximation of equations especially in low earth orbits. Consequently, finding an upper bound for small angle to keep the linear model valid and precise enough would be a vital part of using linear approximation. Results supported by numerical examples demonstrate various features of this study.  相似文献   
6.
This article has adopted an analytical method to obtain a non-linear control law to reach the exponential asymptotic stablity of the permanent rotational motion of a spacecraft. The control moments achieving this rotational motion are obtained. The control moments to establish exponential asymptotic stablity of the mentioned motion are obtained as non-linear functions of the phase coordinates of the spacecraft. The general solution of the equations of perturbed motion is derived. Furthermore, analysis and numerical simulation study of this solution are presented. For numerical examples the time needed for control is calculated. An equilibrium position of the spacecraft is proved to be exponentially asymptotically stable as a special case of the above-studied problem.  相似文献   
7.
Poly allyl diglycol carbonate (PADC or CR-39®) etched track detectors may be used to estimate the neutron component of the cosmic radiation in spacecraft using simple techniques developed for neutron personal dosimetry. Electrochemically etched pits are identified and counted using fully automated read-out procedures. The neutron component of the radiation field at the location of the dosimeter will produce electrochemically etchable tracks, as will the proton and energetic heavy charged particle components, depending on particle type, energy and angle of incidence. The response to incident charged particles which produce tracks and are counted as if produced by a neutron, will lead to an over-estimate of the neutron component. A correction can be applied to take account of this, or an additional chemical etch carried out which allows discrimination. Recent results for exposures in low-Earth orbit are reported.  相似文献   
8.
《Applied Mathematical Modelling》2014,38(7-8):2073-2089
Attitude dynamics of a spacecraft (SC) with variable structure (inertia–mass parameters variation) is examined. Equations of the motion of the SC are obtained on the base of Hamiltonian formalism in Serret–Andoyer variables. These equations can be used for analysis and synthesis of conditions of the SC attitude motion on active legs of orbital trajectories. Analytical and numerical modeling of the SC motion is realized. Existence of the SC chaotic modes of motion is demonstrated with the help of Melnikov method and Poincaré sections. Also attitude motion of a dual-spin spacecraft (DSSC) is considered at presence of small internal harmonic torque between DSSC coaxial bodies.  相似文献   
9.
Most of the current lunar rover vehicle wheels are inconvenient for changing broken wheels and have poor shock absorbing in driving, so they cannot be used to carry people on the moon. To meet the demands for manned lunar transportation, a new wheel possessing a woven metal wire mesh tire and using hub-rim combination slide mechanism is designed in this article. The characteristics of the new wheel is analyzed by comparing with the same-size conventional rover wheels after demonstrating the validity of FEM simulation. The new wheel possesses lighter structure and superior shock absorbing. It also provides stronger traction because the deformation of the designed wheel increases the contact area between the tire and lunar terrain. In order to establish an on-line soil parameter estimation algorithm for low cohesion soil, the stress distribution along a driven deformable wheel on off-road terrain is simplified. The basic mechanics equations of the interaction between the wheel and the lunar soil can be used for analytical analysis. Simulation results show that the soil estimation algorithm can accurately and efficiently identify key soil parameters for loose sand.  相似文献   
10.
赵岩  欧连军  姜爽  张翔  杨友超 《应用声学》2017,25(10):251-254
航空航天飞行器发展迅速,用电设备数量增多,飞行任务复杂性增大,对飞行器配电系统的智能程度以及可靠性提出更高要求。配电器是配电系统的核心设备,为飞行器所有用电负载设备分配电能,其性能的优劣直接影响到飞行任务的成败,BIT(Built-In Test)技术是一种能够显著改善系统或设备测试性能和诊断能力的重要手段。研究了以固态功率控制器为核心器件的配电系统总体方案,对固态功率控制器的故障模式与测试方法进行了分析,给出了测试点设计和优选方法,通过故障诊断能力计算结果表明BIT设计技术可提高配电系统的可靠性和智能化程度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号