首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1849篇
  免费   900篇
  国内免费   75篇
化学   36篇
晶体学   1篇
力学   466篇
综合类   25篇
数学   511篇
物理学   1785篇
  2024年   1篇
  2023年   6篇
  2022年   36篇
  2021年   55篇
  2020年   42篇
  2019年   26篇
  2018年   24篇
  2017年   46篇
  2016年   61篇
  2015年   49篇
  2014年   90篇
  2013年   131篇
  2012年   146篇
  2011年   130篇
  2010年   152篇
  2009年   137篇
  2008年   176篇
  2007年   168篇
  2006年   183篇
  2005年   149篇
  2004年   87篇
  2003年   131篇
  2002年   110篇
  2001年   126篇
  2000年   81篇
  1999年   65篇
  1998年   68篇
  1997年   74篇
  1996年   36篇
  1995年   39篇
  1994年   28篇
  1993年   27篇
  1992年   33篇
  1991年   22篇
  1990年   17篇
  1989年   12篇
  1988年   6篇
  1987年   13篇
  1986年   9篇
  1985年   10篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1957年   2篇
排序方式: 共有2824条查询结果,搜索用时 0 毫秒
1.
We describe a new algorithm which uses the trajectories of a discrete dynamical system to sample the domain of an unconstrained objective function in search of global minima. The algorithm is unusually adept at avoiding nonoptimal local minima and successfully converging to a global minimum. Trajectories generated by the algorithm for objective functions with many local minima exhibit chaotic behavior, in the sense that they are extremely sensitive to changes in initial conditions and system parameters. In this context, chaos seems to have a beneficial effect: failure to converge to a global minimum from a given initial point can often be rectified by making arbitrarily small changes in the system parameters.  相似文献   
2.
It is long known that the Fokker-Planck equation with prescribed constant coefficients of diffusion and linear friction describes the ensemble average of the stochastic evolutions in velocity space of a Brownian test particle immersed in a heat bath of fixed temperature. Apparently, it is not so well known that the same partial differential equation, but now with constant coefficients which are functionals of the solution itself rather than being prescribed, describes the kinetic evolution (in the N→∞ limit) of an isolated N-particle system with certain stochastic interactions. Here we discuss in detail this recently discovered interpretation. An erratum to this article can be found at  相似文献   
3.
We study the coupled translational, electronic, and field dynamics of the combined system “a two-level atom + a single-mode quantized field + a standing-wave ideal cavity”. In the semiclassical approximation with a point-like atom, interacting with the classical field, the dynamics is described by the Heisenberg equations for the atomic and field expectation values which are known to produce semiclassical chaos under appropriate conditions. We derive Hamilton–Schrödinger equations for probability amplitudes and averaged position and momentum of a point-like atom interacting with the quantized field in a standing-wave cavity. They constitute, in general, an infinite-dimensional set of equations with an infinite number of integrals of motion which may be reduced to a dynamical system with four degrees of freedom if the quantized field is supposed to be initially prepared in a Fock state. This system is found to produce semiquantum chaos with positive values of the maximal Lyapunov exponent. At exact resonance, the semiquantum dynamics is regular. At large values of detuning |δ|1, the Rabi atomic oscillations are usually shallow, and the dynamics is found to be almost regular. The Doppler–Rabi resonance, deep Rabi oscillations that may occur at any large value of |δ| to be equal to |αp0|, is found numerically and described analytically (with α to be the normalized recoil frequency and p0 the initial atomic momentum). Two gedanken experiments are proposed to detect manifestations of semiquantum chaos in real experiments. It is shown that in the chaotic regime values of the population inversion zout, measured with atoms after transversing a cavity, are so sensitive to small changes in the initial inversion zin that the probability of detecting any value of zout in the admissible interval [−1,1] becomes almost unity in a short time. Chaotic wandering of a two-level atom in a quantized Fock field is shown to be fractal. Fractal-like structures, typical with chaotic scattering, are numerically found in the dependence of the time of exit of atoms from the cavity on their initial momenta.  相似文献   
4.
The concept and application of phase-space reconstructions are reviewed. Fractional derivatives are then proposed for the purpose of reconstructing dynamics from a single observed time history. A procedure is presented in which the fractional derivatives of time series data are obtained in the frequency domain. The method is applied to the Lorenz system. The ability of the method to unfold the data is assessed by the method of global false nearest neighbors. The reconstructed data is used to compute recurrences and correlation dimensions. The reconstruction is compared to the commonly used method of delays in order to assess the choice of reconstruction parameters, and also the quality of results.  相似文献   
5.
We give a characterization of Gaussian chaos laws on Banach function spaces which do not contain ℓ n 's uniformly. The result is applied to describe the convergence in law of U-processes with sample paths in certain Banach function spaces. __________ Published in Lietuvos Matematikos Rinkinys, Vol. 45, No. 4, pp. 553–566, October–December, 2005.  相似文献   
6.
7.
For vertical-cavity surface-emitting lasers (VCSELs) with polarization-rotated feedback, there exist several synchronization types such as synchronizations between total powers and synchronizations between separate polarization modes. Based on the two-mode rate equations, we study and compare numerically the performances of different synchronization types. Our results show that three synchronization types exhibit good performances when their synchronization conditions are satisfied. They are the complete synchronization between total powers, complete synchronization between x-polarized modes, and generalized synchronization between x-polarized and y-polarized modes. The former two types are sensitive to the injection rate and spontaneous emission, while the third type is contrary. Synchronization type with the best performance may switch from one to another, with changing of injection rate and spontaneous emission factor.  相似文献   
8.
We present a new verified optimization method to find regions for Hénon systems where the conditions of chaotic behaviour hold. The present paper provides a methodology to verify chaos for certain mappings and regions. We discuss first how to check the set theoretical conditions of a respective theorem in a reliable way by computer programs. Then we introduce optimization problems that provide a model to locate chaotic regions. We prove the correctness of the underlying checking algorithms and the optimization model. We have verified an earlier published chaotic region, and we also give new chaotic places located by the new technique.  相似文献   
9.
We show that there is a threshold in energy for the onset of chaos in cosmology for the Universe described as a dynamical system derived from the Einstein equations of General Relativity (GR). In the case of the mixmaster model (homogeneous and anisotropic cosmology with a Bianchi IX metric), the chaos occurs precisely at the prescribed necessary value H vac=0 of the GR for the energy of the Universe while the system is found to be regular for H<0 and chaotic for H>0 with respect to its pure vacuum part. In the case of generalized scalar tensor theories within the Bianchi IX model, we show using the ADM formalism and a conformal transformation that the energy of the dynamical system as compared to vacuum lies below the zero energy threshold. The system is thus not exhibiting chaos and the conclusion still holds in the presence of ordinary matter as well. The suppression of chaos occurs in a similar way for stiff matter alone.  相似文献   
10.
In this paper, the planar dynamics of a nonlinearly constrained pipe conveying fluid is examined numerically, by considering the full nonlinear equation of motions and a refined trilinear-spring model for the impact constraints—completing the circle of several studies on the subject. The effect of varying system parameters is investigated for the two-degree-of-freedom (N=2) model of the system, followed by less extensive similar investigations forN=3 and 4. Phase portraits, bifurcation diagrams, power spectra and Lyapunov exponents are presented for a selected set of system parameters, showing some rather interesting, and sometimes unexpected, results. The numerical results are compared with experimental ones obtained previously. It is found that in the parameter space that includesN, there exists a subspace wherein excellent qualitative, and reasonably good (N=2) to excellent (N=4) quantitative agreement with experiment. In the latter case, excellent agreement is not only obtained in the threshold flow velocities (u) for the key bifurcations, but the inclusion of the nonlinear terms improves agreement with experiment in terms of amplitudes of motion and by capturing features of behaviour not hitherto predicted by theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号