首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
力学   3篇
数学   1篇
  2013年   1篇
  2010年   2篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
For an accurate simulation of forming processes, it is of paramount importance to model the different lubrication regimes that can develop at the contact interface. These might vary from zone to zone of the forming piece, and from one regime to another, resulting in forces of different nature and magnitude. In these cases, the use of the classical Coulomb friction law will be clearly not sufficient to capture, in a suitable manner, the variety of forces applied on the forming piece.  相似文献   
2.
This paper analyzes a transient, nonlinear deep drawing process where a circular blank of a rigid-plastic material is forced by a rigid circular punch to deform into a cylindrical cup. Attention is focused on the plastic flow beneath the blank-holder. Using the Cosserat theory of a generalized membrane it is possible to obtain analytical solutions which examine the following two major effects: (a) the importance of added “rim pressure” acting on the outer edge of the blank; and (b) the importance of a controlled moveable blank-holder to allow blank thickening during the drawing process. Guided by these analytical results, a new deep drawing machine was built to exploit these effects and increase the limit drawing ratio (LDR) of the drawing process. Specifically, the LDR (in one stroke) reached the value of 3.16 compared with the value of about 2.0 in the conventional process. Moreover, the analytical prediction of the punch force versus the punch stroke is in good agreement with the experimental data and with simulations using the computer code DYTRAN.  相似文献   
3.
Subsequent yield surfaces for aluminum alloys are determined for three proportional loading paths (i.e., axial, hoop, and combined hoop and axial stress) using 10 με deviation from linearity as the definition of yield. This paper is in continuation with Parts I and II of the author’s previous papers on subsequent yield surfaces under tension–torsion (σ11–√3σ12) stress space using similar small offset definition of yield. In the current paper comprehensive experimental results on subsequent yield surfaces under tension–tension (σ11σ22) stress space are presented. Comparison of subsequent yield surfaces under (σ11–√3σ12) stress space, investigated in the earlier papers, clearly indicated distinctive hardening behavior under various loading paths. However, subsequent yield surfaces for Al 6061–T 6511 (a low work hardening alloy) showed contraction and negative cross-effect with finite deformation as compared to the annealed 1100 Al (a high work hardening alloy) where expansion and positive cross-effect was observed.  相似文献   
4.
The Olson–Cohen model for strain-induced deformation, further developed by Stringfellow and others, has been calibrated together with a flow stress model for the plastic deformation of metastable stainless steel. Special validation tests for checking one of the limitations of the model have also been carried out. The model has been implemented into a commercial finite element code using a staggered approach for integrating the stress–strain relations with the microstructure model. Results from a thermo-mechanical coupled simulation of hydroforming of a tube have been compared with corresponding experiments. The agreement between experimental results of radial expansion and martensite fraction and the corresponding computed results is good.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号