首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
数学   2篇
  2008年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
How many people can hide in a given terrain, without any two of them seeing each other? We are interested in finding the precise number and an optimal placement of people to be hidden, given a terrain with n vertices. In this paper, we show that this is not at all easy: The problem of placing a maximum number of hiding people is almost as hard to approximate as the problem, i.e., it cannot be approximated by any polynomial-time algorithm with an approximation ratio of n for some >0, unless P=NP. This is already true for a simple polygon with holes (instead of a terrain). If we do not allow holes in the polygon, we show that there is a constant >0 such that the problem cannot be approximated with an approximation ratio of 1+.  相似文献   
2.
A coding problem in steganography   总被引:1,自引:0,他引:1  
To study how to design a steganographic algorithm more efficiently, a new coding problem—steganographic codes (abbreviated stego-codes)—is presented in this paper. The stego-codes are defined over the field with q(q ≥ 2) elements. A method of constructing linear stego-codes is proposed by using the direct sum of vector subspaces. And the problem of linear stego-codes is converted to an algebraic problem by introducing the concept of the tth dimension of a vector space. Some bounds on the length of stego-codes are obtained, from which the maximum length embeddable (MLE) code arises. It is shown that there is a corresponding relation between MLE codes and perfect error-correcting codes. Furthermore the classification of all MLE codes and a lower bound on the number of binary MLE codes are obtained based on the corresponding results on perfect codes. Finally hiding redundancy is defined to value the performance of stego-codes.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号