首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   59篇
  国内免费   3篇
综合类   1篇
数学   9篇
物理学   201篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   7篇
  2011年   19篇
  2010年   23篇
  2009年   30篇
  2008年   33篇
  2007年   10篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   10篇
  2002年   8篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1979年   1篇
排序方式: 共有211条查询结果,搜索用时 390 毫秒
1.
The Hawking radiation of Dirac particles on the event horizon of a nonuniformly rectilinearly accelerating black hole is studied in this paper. First, we construct the symmetrized null tetrad from which the spin coefficients and Dirac equation are derived. Next, by proposing generalized tortoise coordinate transformation, the decoupling problem of the Dirac equation with nonzero rest mass is solved. Finally, by analytic continuation, the Hawking thermal spectrum formula of Dirac particle for nonuniformly rectilinearly accelerating black hole is obtained.  相似文献   
2.
The Hawking radiation of Dirac particles in an arbitrarily rectilinearly accelerating Kinnersley black hole with electromagnetic charge and cosmological constant is investigated by using the generalized tortoise coordinate transformation. Both the location and the temperature of the event horizon depend on the time and the polar angle. The Hawking thermal radiation spectrum of Dirac particles is also derived.  相似文献   
3.
We find the existence of a quantum thermal effect, “Hawking absorption.” near the inner horizon of the Kerr–Newman black hole. Redefining the entropy, temperature, angular velocity, and electric potential of the black hole, we give a new formulation of the Bekenstein–Smarr formula. The redefined entropy vanishes for absolute zero temperature of the black hole and hence it is interpreted as the Planck absolute entropy of the KN black hole.  相似文献   
4.
Hawking radiation is studied for arbitrary scalars, fermions and spin-1 bosons, using a tunneling approach, to every order in ? but ignoring back-reaction effects. It is shown that the additional quantum terms yield no new contribution to the Hawking temperature. Indeed, it is found that the limit of small ? in the standard quantum WKB approximation is replaced by the near-horizon limit in the gravitational WKB approach.  相似文献   
5.
Hawking radiation can be viewed as a process of quantum tunneling near the black hole horizon. When a particle with angular momentum Lωa tunnels across the event horizon of Kerr or Kerr-Newman black hole, the angular momentum per unit mass a should be changed. The emission rate of the massless particles under this general case is calculated, and the result is consistent with an underlying unitary theory. Supported by the National Natural Science Foundation of China (Grant No. 10773002) and the National Basic Research Program of China (Grant No. 2003CB716302)  相似文献   
6.
We demonstrate that a spherical accretion onto astrophysical black holes, under the influence of Newtonian or various post-Newtonian pseudo-Schwarzschild gravitational potentials, may constitute a concrete example of classical analogue gravity naturally found in the Universe. We analytically calculate the corresponding analogue Hawking temperature as a function of the minimum number of physical parameters governing the accretion flow. We study both the polytropic and the isothermal accretion. We show that unlike in a general relativistic spherical accretion, analogue white hole solutions can never be obtained in such post-Newtonian systems. We also show that an isothermal spherical accretion is a remarkably simple example in which the only one information–the temperature of the fluid, is sufficient to completely describe an analogue gravity system. For both types of accretion, the analogue Hawking temperature may become higher than the usual Hawking temperature. However, the analogue Hawking temperature for accreting astrophysical black holes is considerably lower compared with the temperature of the accreting fluid.  相似文献   
7.
Thermal Hawking emission from black holes is a remarkable consequence of the unification of quantum physics and gravitation. Black holes of a few solar masses are the only ones which can form in the present universe. However, having temperatures million times smaller than the ambient cosmic background radiation they cannot evaporate. Primordial black holes of M 1014g would evaporate over a Hubble age and considerable ongoing effort is on to detect such explosions. I point out, however, that at the early universe epochs when such black holes form, the ambient radiation temperature considerably exceeds their corresponding Hawking temperature. This results in rapid continual accretion (absorption) of ambient radiation by these holes. Consequently by the end of the radiation era their masses grow much greater so that their lifetimes (scaling as M3) would now be enormously greater than the Hubble age implying undetectably small emission.  相似文献   
8.
Hawking radiation can be viewed as a process of quantum tunnelling near black hole horizon. When a particle with angular momentum tunnels across the event horizon of Schwarzschild black hole, the black hole will change into a Kerr black hole. The emission rate of the massless particles with angular momentum is calculated, and the result is consistent with an underlying unitary theory.  相似文献   
9.
Some properties of the Hawking radiation emitted by the family of black holes of the Einstein–Maxwell–Dilaton with cosmologicalconstant theory in three dimensions found by Chan and Mann are studiedusing the complex paths method and the Damour–Ruffini method. Theexact values of the quasinormal frequencies of the massless Diracfield propagating on a particular black hole of this family arecalculated. Taking as a basis the results obtained for the values ofthe quasinormal frequencies the instability of some modes isdiscussed. The extension of these results to the black holes of theEinstein–Maxwell–Dilaton theory in four dimensions is studied in theappendix.  相似文献   
10.
The effect of a black hole on the classical physics of exterior electromagnetic fields can be expressed by replacing the black hole by a conducting membrane. We show that when we introduce quantum mechanics the currents in this membrane must also satisfy a quantum Langevin equation and that this, together with the nonzero transmission coefficient for the potential barrier around the hole in the membrane picture, gives rise to the Hawking radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号