首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
力学   11篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2006年   3篇
  2003年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Penetration by a cone into snow is commonly used to characterize snow properties. However, the effects of the diameter and half-angle of the cone on the mechanical properties of snow have not been systematically studied. In addition, no estimation of material parameters in a physically-based model has been made such that the results from penetration provide only an index of snow properties. In this paper, modeling and experimental methods are used to examine the effects of cone geometry on the maximum penetration force and associated hardness, with penetrometers ranging from 2.5 to 4 mm in diameter, 15° to 45° in cone half-angle, and testing both fine-grained and coarse-grained snows. The material point method, in conjunction with the Drucker–Prager cap plasticity model, was used to obtain the theoretical penetration force-distance relationship. Global sensitivity studies were conducted that indicate that the cohesion accounts for 86% of the penetration force, followed distantly by friction angle which accounts for 27%. A general trend, for the simulation results was established: for a given half-angle, the penetration force increases with the increase of diameter which holds for most of the test data as well; for a given diameter, the penetration force decreases with the increase of half-angle, which holds for some of the test data. In addition, for a given half-angle, the hardness decreases with the increase of diameter; for a given diameter, the hardness decreases with the increase of half-angle. To take into consideration the uncertainty of test data, a simple interval-based metric was used to compare test data with simulation results; the comparison was satisfactory. The material parameters from the simulations can thus be considered as calibrated ones for the snow studied.  相似文献   
2.
The Drucker–Prager yield criterion is used in conjunction with its associated flow rule to find the elastic/plastic stress and strain distributions within the rotating annular disks under plane stress conditions. The main distinguished feature of the model, as compared to typical models used for analysis of disks, is that the material is plastically compressible. Using an approach proposed elsewhere, the solution for strain rates is reduced to one nonlinear ordinary differential equation and two linear ordinary differential equations. These equations can be solved one by one, which significantly simplifies the numerical treatment and increases the accuracy of solution.  相似文献   
3.
The interaction of a tire with a soft terrain has multiple sources of uncertainties such as the mechanical properties of the terrain, and the interfacial properties between the tire and the terrain. These uncertainties are best characterized using statistical methods such as the development of stochastic models of tire–soil interaction. The quality of the models can be assessed via statistical validation measures or metrics. Although validation of stochastic tire–soil interaction models has recently been reported with good results, it involves longitudinal slip only without considering lateral slip which can occur simultaneously with longitudinal motion. This paper presents results of the validation of a simple stochastic tire–soil interaction model for the more complicated case of combined slip. The statistical methods used for validation include the development of a Gaussian process metamodel, the calibration of model parameters using the approach of the maximum likelihood estimate in conjunction with new test data. The validation of the calibrated model, when compared with test data, is obtained using four validation metrics with good results.  相似文献   
4.
Numerical studies using the Material Point Method (MPM) have been conducted recently to model snow penetration tests for fine-grained and coarse-grained snows using small cones with diameters ranging from 2.5 mm to 4 mm, and cone half-angles between 15° and 45°. Although numerical studies have gained physical insight of these tests, due to the lengthy computation time needed for the MPM simulations, it is not feasible to use these simulations to develop a stochastic model to assess the large variations of the mechanical properties of snow typically shown in tests. In this paper, we present a simple and efficient physics-based analytical model based on equilibrium and a cavity expansion solution upon which a stochastic model is built to obtain calibrated material parameters for a Drucker–Prager (DP) model such that prediction of the model can be made. Sensitivity analysis of the analytical model indicates that cohesion and interfacial shear (friction) factor contribute significantly to the penetration hardness whereas the friction angle has little contribution. The calibrated material parameters are similar to those estimated via the MPM simulations. The quality of the stochastic model, when compared with test data, was assessed using four interval-based validation metrics with good results.  相似文献   
5.
In Gurson's footsteps, different authors have proposed macroscopic plastic models for porous solid with pressure-sensitive dilatant matrix obeying the normality law (associated materials). The main objective of the present paper is to extend this class of models to porous materials in the context of non-associated plasticity. This is the case of Drucker–Prager matrix for which the dilatancy angle is different from the friction one, and classical limit analysis theory cannot be applied. For such materials, the second last author has proposed a relevant modeling approach based on the concept of bipotential, a function of both dual variables, the plastic strain rate and stress tensors. On this ground, after recalling the basic elements of the Drucker–Prager model, we present the corresponding variational principles and the extended limit analysis theorems. Then, we formulate a new variational approach for the homogenization of porous materials with a non-associated matrix. This is implemented by considering the hollow sphere model with a non-associated Drucker–Prager matrix. The proposed procedure delivers a closed-form expression of the macroscopic bifunctional from which the criterion and a non-associated flow rule are readily obtained for the porous material. It is shown that these general results recover several available models as particular cases. Finally, the established results are assessed and validated by comparing their predictions to those obtained from finite element computations carried out on a cell representing the considered class of materials.  相似文献   
6.
Extending a previous work on the Gurson model for a ‘porous von Mises’ material, the present study first focuses on the yield criterion of a ‘porous Drucker–Prager’ material with spherical cavities. On the basis of the Gurson micro-macro model and a second order conic programming (socp) formulation, calculated inner and outer approaches to the criterion are very close, providing a reliable estimate of the yield criterion. Comparison with an analytical criterion recently proposed by Barthélémy and Dormieux—from a nonlinear homogenization method—shows both excellent agreement when considering tensile average boundary conditions and substantial improvement under compressive conditions. Then the results of an analogous study in the case of cylindrical cavities in plane strain are presented. It is worth noting that obtaining these results was made possible by using mosek, a recent commercial socp code, whose impressive efficiency was already seen in our previous works. To cite this article: M. Trillat et al., C. R. Mecanique 334 (2006).  相似文献   
7.
A micromechanical modeling of closed cracks as flat ellipsoidal inhomogeneities has been recently proposed in [Deudé et al., C. R. Mecanique 330 (2002) 589–599]. The present Note extends this approach to the case of a frictional contact between the crack lips. For von Mises friction, a linear hardening is obtained at the macroscopic scale, the state equation in terms of stress and strain rates being identical to that derived for unfrictional cracks. For Drucker–Prager friction, the micromechanical approach predicts a macroscopic dilatant behavior. To cite this article: J.-F. Barthélémy et al., C. R. Mecanique 331 (2003).  相似文献   
8.
Study of Pressure Sensitive Plastic Flow Behaviour of Gasket Materials   总被引:1,自引:0,他引:1  
The mechanical behaviour of the materials used as compressible gasket in the ultra high pressure apparatus is investigated. Materials such as pyrophyllite and talc, showing a pressure sensitive plastic flow behaviour were considered and a testing configuration was set up for studying the dependence of their plastic response on the hydrostatic component of the stress tensor, according to the Drucker-Prager criterion. A Finite Element modelling of the test was performed to evaluate the specimen response and the local stress condition, during loading. The Finite Element results were validated by comparison with those of a specific experimental characterisation. A parametric analysis was then carried out, by varying the materials constitutive behaviour, in order to build up a data base of representative curves. In this way an algorithm was developed, with the aim of determining the material constitutive behaviours by the analysis of the experimental data. The proposed procedure was then used to study the mechanical response of different gasket materials.  相似文献   
9.
A rigid plastic behavior characterized by a failure criterion of the Drucker–Prager type and a non associated flow rule is considered. The latter can be viewed formally as the limit of a sequence of viscous behaviors with isotropic prestress. The limit states of a composite made up of such a material reinforced by rigid inclusions are then determined. The latter lie on a Drucker–Prager cone which friction coefficient is greater than that of the matrix and depends on the characteristics of the strength and of the flow rule of the matrix, as well as on the volume fraction of the inclusions. To cite this article: L. Dormieux et al., C. R. Mecanique 334 (2006).  相似文献   
10.
A porous medium, which matrix is a perfectly plastic solid, is considered. This paper proposes a method to determine the macroscopic admissible stress states. The method is based on a homogenization technique which takes advantage of the equivalence, under certain conditions, between a problem of limit analysis and a ficticious nonlinear elastic problem. The particular case of a Drucker–Prager solid matrix is considered. The method provides an analytical expression for the complete macroscopic strength criterion. To cite this article: J.-F. Barthélémy, L. Dormieux, C. R. Mecanique 331 (2003).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号