首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   7篇
  国内免费   13篇
化学   6篇
力学   122篇
数学   52篇
物理学   10篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2018年   3篇
  2016年   9篇
  2015年   5篇
  2014年   2篇
  2013年   17篇
  2012年   2篇
  2011年   10篇
  2010年   6篇
  2009年   11篇
  2008年   6篇
  2007年   14篇
  2006年   5篇
  2005年   16篇
  2004年   8篇
  2003年   9篇
  2002年   13篇
  2001年   12篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   12篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
1.
2.
In this paper, an adaptive FE analysis is presented based on error estimation, adaptive mesh refinement and data transfer for enriched plasticity continua in the modelling of strain localization. As the classical continuum models suffer from pathological mesh-dependence in the strain softening models, the governing equations are regularized by adding rotational degrees-of-freedom to the conventional degrees-of-freedom. Adaptive strategy using element elongation is applied to compute the distribution of required element size using the estimated error distribution. Once a new mesh is generated, state variables and history-dependent variables are mapped from the old finite element mesh to the new one. In order to transfer the history-dependent variables from the old to new mesh, the values of internal variables available at Gauss point are first projected at nodes of old mesh, then the values of the old nodes are transferred to the nodes of new mesh and finally, the values at Gauss points of new elements are determined with respect to nodal values of the new mesh. Finally, the efficiency of the proposed model and computational algorithms is demonstrated by several numerical examples.  相似文献   
3.
Discrete fine-scale models, in the form of either particle or lattice models, have been formulated successfully to simulate the behavior of quasi-brittle materials whose mechanical behavior is inherently connected to fracture processes occurring in the internal heterogeneous structure. These models tend to be intensive from the computational point of view as they adopt an “a priori” discretization anchored to the major material heterogeneities (e.g. grains in particulate materials and aggregate pieces in cementitious composites) and this hampers their use in the numerical simulations of large systems. In this work, this problem is addressed by formulating a general multiple scale computational framework based on classical asymptotic analysis and that (1) is applicable to any discrete model with rotational degrees of freedom; and (2) gives rise to an equivalent Cosserat continuum. The developed theory is applied to the upscaling of the Lattice Discrete Particle Model (LDPM), a recently formulated discrete model for concrete and other quasi-brittle materials, and the properties of the homogenized model are analyzed thoroughly in both the elastic and the inelastic regime. The analysis shows that the homogenized micropolar elastic properties are size-dependent, and they are functions of the RVE size and the size of the material heterogeneity. Furthermore, the analysis of the homogenized inelastic behavior highlights issues associated with the homogenization of fine-scale models featuring strain-softening and the related damage localization. Finally, nonlinear simulations of the RVE behavior subject to curvature components causing bending and torsional effects demonstrate, contrarily to typical Cosserat formulations, a significant coupling between the homogenized stress–strain and couple-curvature constitutive equations.  相似文献   
4.
5.

It is shown that a continuum that is an space in the sense of Michael must be hereditarily decomposable. This improves known results, thereby providing more evidence that such continua must be dendrites.

  相似文献   

6.
A full analogy of the celebrated Sharkovsky cycle coexistence theorem is established for lower semicontinuous (multivalued) maps on metrizable linear continua. This result is further extended to triangular maps.  相似文献   
7.
Toupin's early theory for an elastic dielectric is called upon to describe main events in an active damper.  相似文献   
8.
One of the most well-known situations in which nonlinear effects must be taken into account to obtain realistic results is the rotating beam problem. This problem has been extensively studied in the literature and has even become a benchmark problem for the validation of nonlinear formulations. Among other approaches, the substructuring technique was proven to be a valid strategy to account for this problem. Later, the similarities between the absolute nodal coordinate formulation and the substructuring technique were demonstrated. At the same time, it was found the existence of a critical angular velocity, beyond which the system becomes unstable that was dependent on the number of substructures. Since the dependence of the critical velocity was not so far clear, this paper tries to shed some light on it. Moreover, previous studies were focused on a constant angular velocity analysis where the effects of Coriolis forces were neglected. In this paper, the influence of the Coriolis force term is not neglected. The influence of the reference conditions of the element frame are also investigated in this paper.  相似文献   
9.
Discrete and continuum modelling of excavator bucket filling   总被引:1,自引:0,他引:1  
Two-dimensional discrete and continuum modelling of excavator bucket filling is presented. The discrete element method (DEM) is used for the discrete modelling and the material-point method (MPM) for continuum modelling. MPM is a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire bucket filling process due to large displacements and distortions of the mesh. The use of a meshless method overcomes this problem. DEM and MPM simulations (plane strain) of bucket filling are compared to two-dimensional experimental results. Cohesionless corn grains were used as material and the simulated force acting on the bucket and flow patterns were compared with experimental results. The corn macro (continuum) and micro (DEM) properties were obtained from shear and oedometer tests. As part of the MPM simulations, both the classic (nonpolar) and the Cosserat (polar) continuums were used. Results show that the nonpolar continuum is the most accurate in predicting the bucket force while the polar and DEM methods predict lower forces. The DEM model does not accurately predict the material flow during filling, while the polar and nonpolar methods are more accurate. Different flow zones develop during filling and it is shown that DEM, the polar and the nonpolar methods can accurately predict the position and orientation of these different flow zones.  相似文献   
10.
Some consistency problems existing in continuum field theories are briefly reviewed. Three arts of consistency problems are clarified based on the renewed basic laws for polar continua. The first art discusses the consistency problems between the basic laws for polar continua. The second art discusses the consistency problems between the basic laws for polar continua and for other nonpolar continua. The third art discusses the consistency problems between the basic laws for micropolar continuum theories and the dynamical equations for rigid body. The results presented here can help us to get a deeper understanding the structure of the basic laws for various continuum theories and the interrelations between them. In the meantime, these results obtained show clearly that the consistency problems could not be solved in the framework of traditional basic laws for continuum field theories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号