首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
数学   1篇
物理学   3篇
  2013年   3篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
《Composite Interfaces》2013,20(4):319-336
Not all steel fiber reinforced concrete composites are equally effective in enhancing structural performance. Their mechanical behaviour strongly depends upon the reinforcement morphology as well as the properties of the interface lying between steel reinforcement and concrete matrix. Using bone-shaped short (BSS) steel fibers, instead of conventional straight short (CSS) steel fibers, to reinforce concrete has demonstrated their potential in improving toughness, ductility and energy absorbing capacity under impact significantly and simultaneously. Accomplishing a strong steel–concrete interface leads to a slight increase in composite strength but simultaneously to a significant decrease in its toughness. Due to the sensitivity of steel reinforced concrete performance on these complex geometric and material parameters, the development of a numerical tool capable of simulating accurately the composite mechanical behaviour and thus leading to optimized design solutions is desirable. The physical problem of the present work involves a typical concrete composite uniformly reinforced with steel fibers subjected to tensional loading. A micromechanical non-linear finite element formulation is utilized in order to predict the load transfer characteristics and the failure process. A linear material behaviour is assumed for the steel component; a non-linear multi-crack material response is used to describe concrete while a mix-mode bilinear behaviour is utilized for the interface providing separation of primary material phases. Numerical results are presented in terms of the global design parameters. The influence of the fiber end shape, the interface strength and the fiber volume fraction on the composite strength and toughness is addressed and consequently optimized design preferences arise.  相似文献   
2.
《Composite Interfaces》2013,20(1):75-94
Interfacial debonding behavior is studied for unidirectional fiber reinforced composites from both experimental and analytical viewpoints. A new type of two-dimensional unidirectional model composite is prepared using 10 boron fibers and transparent epoxy resin with two levels of interfacial strength. In situ observation of the internal mesoscopic fracture process is carried out using the single edge notched specimen under static loading. The matrix crack propagation, the interfacial debonding growth and the interaction between them are directly observed in detail. As a result, the interfacial debonding is clearly accelerated in specimens with weakly bonded fibers in comparison with those with strongly bonded fibers. Secondary, three-dimensional finite element analysis is carried out in order to reproduce the interfacial debonding behavior. The experimentally observed relation between the mesoscopic fracture process and the applied load is given as the boundary condition. We successfully evaluate the mode II interfacial debonding toughness and the effect of interfacial frictional shear stress on the apparent mode II energy release rate separately by employing the present model composite in combination with the finite element analysis. The true mode II interfacial debonding toughness for weaker interface is about 0.4 times as high as that for a stronger interface. The effect of the interfacial frictional shear stress on the apparent mode II energy release rate for the weak interface is about 0.07 times as high as that for the strong interface. The interfacial frictional shear stress and the coefficient of friction for weak interface are calculated as 0.25 and 0.4 times as high as those for strong interface, respectively.  相似文献   
3.
《Composite Interfaces》2013,20(1):37-48
By application of the theory of complex functions, asymmetrical dynamic propagation problems concerning mode III interface crack were studied. The general representations of analytical solutions are acquired by the approaches of self-similar functions. The problems considered can easily be transformed into Riemann–Hilbert problems and two examples under the action of moving increasing normal force Px/t and increasing loads Pt located at the origin of the coordinates of the crack are given, respectively. After those solutions are used by superposition theorem, the solutions of arbitrarily complex problems can be attained.  相似文献   
4.
In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher precision and less computation are reached. This method is applied to calculating the stress intensity factor for a finite plate with an inclined crack. The influence of θ (the obliquity of crack) on the stress intensity factors, as well as the number of summation terms on the stress intensity factor are studied and graphically represented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号