首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59918篇
  免费   6768篇
  国内免费   12271篇
化学   53866篇
晶体学   1970篇
力学   1206篇
综合类   510篇
数学   4370篇
物理学   17035篇
  2024年   157篇
  2023年   1075篇
  2022年   1776篇
  2021年   2257篇
  2020年   2519篇
  2019年   2129篇
  2018年   1752篇
  2017年   2162篇
  2016年   2353篇
  2015年   2029篇
  2014年   2765篇
  2013年   5520篇
  2012年   3807篇
  2011年   4138篇
  2010年   3474篇
  2009年   4153篇
  2008年   3967篇
  2007年   4064篇
  2006年   3876篇
  2005年   3354篇
  2004年   3172篇
  2003年   2734篇
  2002年   2331篇
  2001年   1839篇
  2000年   1718篇
  1999年   1352篇
  1998年   1198篇
  1997年   1037篇
  1996年   922篇
  1995年   893篇
  1994年   793篇
  1993年   640篇
  1992年   614篇
  1991年   445篇
  1990年   314篇
  1989年   275篇
  1988年   232篇
  1987年   156篇
  1986年   126篇
  1985年   139篇
  1984年   109篇
  1983年   42篇
  1982年   86篇
  1981年   102篇
  1980年   71篇
  1979年   74篇
  1978年   46篇
  1977年   53篇
  1976年   32篇
  1973年   32篇
排序方式: 共有10000条查询结果,搜索用时 358 毫秒
1.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
2.
《Mendeleev Communications》2022,32(1):126-128
3-Aryl-5-methylidene-2-thiohydantoins were constructed in one-pot reaction of aryl isothiocyanates and 3-morpholino- alanine in alkaline medium with the subsequent treatment with boiling hydrochloric acid.  相似文献   
3.
In the periodic table the position of each atom follows the ‘aufbau’ principle of the individual electron shells. The resulting intrinsic periodicity of atomic properties determines the overall behavior of atoms in two-dimensional (2D) bonding and structure formation. Insight into the type and strength of bonding is the key in the discovery of innovative 2D materials. The primary features of 2D bonding and the ensuing monolayer structures of the main-group II–VI elements result from the number of valence electrons and the change of atom size, which determine the type of hybridization. The results reveal the tight connection between strength of bonding and bond length in 2D networks. The predictive power of the periodic table reveals general rules of bonding, the bonding-structure relationship, and allows an assessment of published data of 2D materials.  相似文献   
4.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   
5.
Prediction of drag reduction effect caused by pulsating pipe flows is examined using machine learning. First, a large set of flow field data is obtained experimentally by measuring turbulent pipe flows with various pulsation patterns. Consequently, more than 7000 waveforms are applied, obtaining a maximum drag reduction rate and maximum energy saving rate of 38.6% and 31.4%, respectively. The results indicate that the pulsating flow effect can be characterized by the pulsation period and pressure gradient during acceleration and deceleration. Subsequently, two machine learning models are tested to predict the drag reduction rate. The results confirm that the machine learning model developed for predicting the time variation of the flow velocity and differential pressure with respect to the pump voltage can accurately predict the nonlinearity of pressure gradients. Therefore, using this model, the drag reduction effect can be estimated with high accuracy.  相似文献   
6.
《Mendeleev Communications》2022,32(4):537-539
The two novel conglomerates were obtained by crystallization of racemic (2'S,3aS,6aR)/(2'R,3aR,6aS) (glycoluril-1-yl)-3-methylbutanoic acid and (2'R,3aR,6aR)/(2'S,3aS,6aS) (4,6-dimethylglycoluril-1-yl)pentanoic acid synthesized by highly diastereoselective condensation of 4,5-dihydroxy- imidazolidin-2-ones with racemic ureido acids. The differences in the molecular geometry of synthesized racemates were studied by X-ray diffraction that showed them to crystallize as conglomerates in non-centrosymmetric space groups Pna21 and P212121, respectively  相似文献   
7.
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2S had more opportunities to react with surrounding O2, which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2S and PDA-Ag2S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2S showed distinctly better therapeutic effects than Ag2S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2S quantum dots, which extended and enhanced the regulatory effect originating from PDA.  相似文献   
8.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
9.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   
10.
Enantiopure β‐amino acids represent interesting scaffolds for peptidomimetics, foldamers and bioactive compounds. However, the synthesis of highly substituted analogues is still a major challenge. Herein, we describe the spontaneous rearrangement of 4‐carboxy‐2‐oxoazepane α,α‐amino acids to lead to 2′‐oxopiperidine‐containing β2,3,3‐amino acids, upon basic or acid hydrolysis of the 2‐oxoazepane α,α‐amino acid ester. Under acidic conditions, a totally stereoselective synthetic route has been developed. The reordering process involved the spontaneous breakdown of an amide bond, which typically requires strong conditions, and the formation of a new bond leading to the six‐membered heterocycle. A quantum mechanical study was carried out to obtain insight into the remarkable ease of this rearrangement, which occurs at room temperature, either in solution or upon storage of the 4‐carboxylic acid substituted 2‐oxoazepane derivatives. This theoretical study suggests that the rearrangement process occurs through a concerted mechanism, in which the energy of the transition states can be lowered by the participation of a catalytic water molecule. Interestingly, it also suggested a role for the carboxylic acid at position 4 of the 2‐oxoazepane ring, which facilitates this rearrangement, participating directly in the intramolecular catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号