首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  国内免费   1篇
化学   23篇
数学   1篇
物理学   1篇
  2022年   5篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2007年   3篇
  2005年   1篇
  2003年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
In this research, poly(diallyldimethylammonium chloride)-capped gold nanoparticles, nickel ferrite particles, and carbon nanotubes were combined to form a PANC metal composite. The prepared metal composite modified onto a glassy carbon electrode was electropolymerized with poly(o-phenylenediamine) and immobilized with horseradish peroxidase, anti-carcinoembryonic antigen antibody, and bovine serum albumin to create the label-free immunosensors for rapid detection of carcinoembryonic antigen (CEA) using chronoamperometry. This developed biocomposite material modified onto a glassy carbon electrode presented an excellent electrocatalytic response to the redox reaction of hydrogen peroxide as a sensing probe, from which the kinetic parameters including of a charge transfer rate constant, a diffusion coefficient value, an electroactive surface area, and a surface concentration were calculated to be 1.85 s−1, 4.28×10−6 cm2 s−1, 0.14 cm2 and 1.87×10−8 mol cm−2, respectively. The developed immunosensors also exhibited a wide linear range of CEA concentration from 0.01 to 25 ng mL−1 with high sensitivity (96.21 μA cm−2 ng−1 mL) and low detection limit (0.72 pg mL−1), excellent selectivity without interfering effects from possible species (amoxicillin, ascorbic acid, aspirin, caffeine, cholesterol, dopamine, glucose, and uric acid), outstanding stability (n=100, %I>50 %), repeatability (%RSD=0.34, n=10), reproducibility (%RSD=4.06, n=10), and rapid analysis (25 s each operation time). This proposed method was successfully applied for CEA detection in whole blood samples with satisfactory results, suggesting that this developed sensing platform may be considered to be exploited for fabrication of other label-free electrochemical immunosensors for the real sample analysis.  相似文献   
2.
Background: Element-tagged immunoassay coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection has the potential to revolutionize immunoassay analysis for multiplex detection. However, a further study referring to the standard evaluation and clinical sample verification is needed to ensure its reliability for simultaneous analysis in clinical laboratories. Methods: Carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) were chosen for the duplex immunoassay. The performance of the assay was evaluated according to guidelines from the Clinical and Laboratory Standards Institute (CLSI). Moreover, reference intervals (RIs) of CEA and AFP were established. At last, 329 clinical samples were analyzed by the proposed method and results were compared with those obtained with electrochemiluminescent immunoassay (ECLIA) method. Results: The measurement range of the assay was 2–940 ng/mL for CEA and 1.5–1000 ng/mL for AFP, with a detection limit of 0.94 ng/mL and 0.34 ng/mL, respectively. The inter-assay and intra-assay imprecision were all less than 6.58% and 10.62%, respectively. The RI of CEA and AFP was 0–3.84 ng/mL and 0–9.94 ng/mL, respectively. Regarding to clinical sample detection, no significant difference was observed between the proposed duplex assay and the ECLIA method. Conclusions: The ICP-MS-based duplex immunoassay was successfully developed and the analytical performance fully proved clinical applicability. Well, this could be different with other analytes.  相似文献   
3.
《Electroanalysis》2017,29(12):2832-2838
In this study, a bimetallic nanomaterial‐based electrochemical immunosensor was developed for the detection of carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF) cancer biomarkers at the same time. CEA and VEGF biomarkers are indicators for colon and breast cancers and stomach cancers, respectively. During the study, gold nanoparticle (AuNp), lead nanoparticle (PbNp), copper nanoparticle (CuNp) and magnetic gamma iron(III)oxide (γFe2O3 Np) were synthesized, characterized and used together for the first time in the structure of an electrochemical biosensor based on anti‐CEA and anti‐VEGF. For this purpose, Au SPE based sandwich immunosensor was fabricated by using labeled anti‐CEA (labeled with Pb+2) and labeled anti‐VEGF (labeled with Cu+2). As a result, CEA and VEGF biomarkers were detected following the oxidation peaks of label metals (Pb+2 and Cu+2) by using differential pulse voltammetry. After the experimental parameters were optimized, the linear range was found in the concentration range between 25 ng/mL and 600 ng/mL with the relative standard deviation (RSD) value of (n=3 for 600 ng/mL) 3.33 % and limit of detection (LOD) value of 4.31 ng/mL for CEA biomarker. On the other hand, the linear range was found in the concentration range between 0.2 ng/mL and 12.5 ng/mL with the RSD value of (n=3 for 12.5 ng/mL) 5.31 % and LOD value of 0.014 ng/mL for VEGF biomarker. Lastly, sample application studies for synthetic plasma sample and interference studies with dopamine, ascorbic acid, BSA, cysteine and IgG were carried out.  相似文献   
4.
Han J  Zhuo Y  Chai YQ  Mao L  Yuan YL  Yuan R 《Talanta》2011,85(1):130-135
A new label-free amperometric immunosensor was developed for detection of carcinoembryonic antigen (CEA) based on chitosan-ferrocene (CS-Fc) and nano-TiO2 (CS-Fc + TiO2) complex film and gold nanoparticles-graphene (Au-Gra) nanohybrid. CS-Fc + TiO2 composite membrane was first modified on a bare glass carbon electrode. Then Au-Gra nanohybrid was formed on the CS-Fc + TiO2 membrane by self-assembly strategy. Next, further immobilization of anti-CEA was constructed according to the strong interaction between Au-Gra and the amido groups of anti-CEA. Since Au-Gra nanohybrid films provided a congenial microenvironment for the immobilization of biomolecules, the surface coverage of antibody protein could be enhanced and the sensitivity of the immunosensor has been improved. The good electronic conductive characteristic might be attributed to the synergistic effect of graphene nanosheets and Au NPs. The modified process was characterized by scanning electron microscope (SEM) and cyclic voltammetry (CV). Under optimized conditions, the resulting biosensor displayed good amperometric response to CEA with linear range from 0.01 to 80 ng/mL and a detection limit of 3.4 pg/mL (signal/noise = 3). The results demonstrated that the immunosensor has advantages of high conduction, sensitivity, and long life time. This assay approach showed a great potential in clinical applications and detection of low level proteins.  相似文献   
5.
Gao X  Zhang Y  Wu Q  Chen H  Chen Z  Lin X 《Talanta》2011,85(4):1980-1985
A simple and controllable one-step electrodeposition method for the preparation of a chitosan-carbon nanotubes-gold nanoparticles (CS-CNTs-GNPs) nanocomposite film was used to fabricate an immunosensor for detection of carcinoembryonic antigen (CEA). The porous three-dimensional CS-CNTs-GNPs nanocomposite film, which offered a large specific surface area for immobilization of antibodies, exhibited improved conductivity, high stability and good biocompatibility. The morphology of the formed nanocomposite film was investigated by scanning electron microscopy (SEM), and the electrochemical behaviors of the immunosensor were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Under the optimal conditions, the proposed immunosensor could detect CEA in two linear ranges from 0.1 to 2.0 ng mL−1 and from 2.0 to 200.0 ng mL−1, with a detection limit of 0.04 ng mL−1. The immunosensor based on CS-CNTs-GNPs nanocomposite film as the antibody immobilization matrix could exhibit good sensitivity, stability, and reproducibility for the determination of CEA.  相似文献   
6.
An effective electrochemical signal amplification strategy based on enzyme membrane modification and redox probe immobilization was proposed to construct an amperometric immunosensor.L-cysteine@ferrocene functionalized chitosan,which possessed not only efficient redox-activity but also excellent film-forming ability,was coated on the bare glass carbon electrode. Moreover,the thiol groups(SH)in the ferrocenyl compound were used for gold nanoparticles immobilization via the strong bonding interaction,which co...  相似文献   
7.
In recent years the use of monolithic polymers in separation science has greatly increased due to the advantages these materials present over particle-based stationary phases, such as their relative ease of preparation and good permeability. For these reasons, these materials present high potential as stationary phases for the separation and purification of large molecules such as proteins, peptides, nucleic acids and cells. An example of this is the wide range of commercial available polymer-based monolithic columns now present in the market.  相似文献   
8.
Electrochemical sensing of carcinoembryonic antigen(CEA)on a gold electrode modified by the se- quential incorporation of the mediator,thionine(Thi),and gold nanoparticles(nano-Au),through co- valent linkage and electrostatic interactions onto a self-assembled monolayer configuration is de- scribed in this paper.The enzyme,horseradish peroxidase(HRP),was employed to block the possible remaining active sites of the nano-Au monolayer,avoid the non-specific adsorption,instead of bovine serum albumin(BSA),and amplify the response of the antigen-antibody reaction.Electrochemical ex- periments indicated highly efficient electron transfer by the imbedded Thi mediator and adsorbed nano-Au.The HRP kept its activity after immobilization,and the studied electrode showed sensitive response to CEA and high stability during a long period of storage.The working range for the system was 2.5 to 80.0 ng/mL with a detection limit of 0.90 ng/mL.The model membrane system in this work is a potential biosensor for mimicking the other immunosensor and enzyme sensor.  相似文献   
9.
戴宗  严枫  鞠熀先 《分析试验室》2003,22(Z1):297-298
通过同时固定硫堇和HRP标记癌胚抗原(CEA)抗体于电化学预处理的玻碳电极表面,制备了新型无需分离的CEA快速电化学检测免疫传感器.CEA测定的两段线性范围为0.5~3.0和3.0~167 ng/mL,检测下限为0.1 ng/mL.该传感器具有良好的准确性、精密度、制备重复性和稳定性.该方法缩短了分析时间,降低了测定成本,适用于临床CEA的快速测定.  相似文献   
10.
Nitrogen-doped TiO2 nanocrystals (N−TiO2 NCs) were simply synthesized and then functionalized with streptavidin for highly sensitive electrochemical immunoassay of tumor marker. Scanning electron microscopy, transmission electron microscopy, static water contact angle, and cyclic voltametric measurement were adapted to examine the properties of N−TiO2 NCs and resultant immunosensor. The functionalized N−TiO2 NCs sensing platform shows high electrochemical conductivity, large surface area and excellent hydrophilicity. The features make them to produce high current response, capture more antibody molecules, and maintain the bioactivity of immobilized antibodies. By means of carcinoembryonic antigen (CEA) as model tumor marker, a wide linear range of 0.005–3 ng/mL and a low detection limit of 0.005 ng/mL (signal-to-noise ratio of 3) were achieved by the proposed CEA immunosensor. Furthermore, the resultant CEA immunosensor displays high specificity and was employed to determine CEA in clinical serum samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号