首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1070篇
  免费   22篇
  国内免费   111篇
化学   29篇
力学   20篇
综合类   1篇
数学   1036篇
物理学   117篇
  2023年   20篇
  2022年   45篇
  2021年   37篇
  2020年   39篇
  2019年   21篇
  2018年   32篇
  2017年   40篇
  2016年   15篇
  2015年   17篇
  2014年   29篇
  2013年   129篇
  2012年   25篇
  2011年   61篇
  2010年   49篇
  2009年   72篇
  2008年   67篇
  2007年   61篇
  2006年   64篇
  2005年   41篇
  2004年   49篇
  2003年   46篇
  2002年   43篇
  2001年   43篇
  2000年   28篇
  1999年   31篇
  1998年   26篇
  1997年   28篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1987年   3篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1967年   1篇
排序方式: 共有1203条查询结果,搜索用时 15 毫秒
1.
A formal computation proving a new operator identity from known ones is, in principle, restricted by domains and codomains of linear operators involved, since not any two operators can be added or composed. Algebraically, identities can be modelled by noncommutative polynomials and such a formal computation proves that the polynomial corresponding to the new identity lies in the ideal generated by the polynomials corresponding to the known identities. In order to prove an operator identity, however, just proving membership of the polynomial in the ideal is not enough, since the ring of noncommutative polynomials ignores domains and codomains. We show that it suffices to additionally verify compatibility of this polynomial and of the generators of the ideal with the labelled quiver that encodes which polynomials can be realized as linear operators. Then, for every consistent representation of such a quiver in a linear category, there exists a computation in the category that proves the corresponding instance of the identity. Moreover, by assigning the same label to several edges of the quiver, the algebraic framework developed allows to model different versions of an operator by the same indeterminate in the noncommutative polynomials.  相似文献   
2.
We give a sheaf theoretic interpretation of Potts models with external magnetic field, in terms of constructible sheaves and their Euler characteristics. We show that the polynomial countability question for the hypersurfaces defined by the vanishing of the partition function is affected by changes in the magnetic field: elementary examples suffice to see non-polynomially countable cases that become polynomially countable after a perturbation of the magnetic field. The same recursive formula for the Grothendieck classes, under edge-doubling operations, holds as in the case without magnetic field, but the closed formulae for specific examples like banana graphs differ in the presence of magnetic field. We give examples of computation of the Euler characteristic with compact support, for the set of real zeros, and find a similar exponential growth with the size of the graph. This can be viewed as a measure of topological and algorithmic complexity. We also consider the computational complexity question for evaluations of the polynomial, and show both tractable and NP-hard examples, using dynamic programming.  相似文献   
3.
Algebraic methods in quantum mechanics: from molecules to polymers   总被引:2,自引:0,他引:2  
We present a brief review of algebraic techniques developed and applied in molecular spectroscopy in the last five years. We also outline perspectives for new applications of the Lie algebraic method in the first decade of the new century. Received 21 November 2001  相似文献   
4.
We present the procedure of exactly solving the Izergin–Korepin model with open boundary conditions by using the algebraic Bethe ansatz, which include constructing the multi-particle state and achieving the eigenvalue of the transfer matrix and corresponding Bethe equations. We give a proof about our conclusions on the multi-particle state based on an assumption. When the model is Uq(su(2)) quantum invariant, our results agree with that obtained by analytic Bethe ansatz method.  相似文献   
5.
Using a combinatorial approach that avoids geometry, this paper studies the structure of KT(G/B), the T-equivariant K-theory of the generalized flag variety G/B. This ring has a natural basis (the double Grothendieck polynomials), where is the structure sheaf of the Schubert variety Xw. For rank two cases we compute the corresponding structure constants of the ring KT(G/B) and, based on this data, make a positivity conjecture for general G which generalizes the theorems of M. Brion (for K(G/B)) and W. Graham (for HT*(G/B)). Let [Xλ]KT(G/B) be the class of the homogeneous line bundle on G/B corresponding to the character of T indexed by λ. For general G we prove “Pieri–Chevalley formulas” for the products , , , and , where λ is dominant. By using the Chern character and comparing lowest degree terms the products which are computed in this paper also give results for the Grothendieck polynomials, double Schubert polynomials, and ordinary Schubert polynomials in, respectively K(G/B), HT*(G/B) and H*(G/B).  相似文献   
6.
We present a bounded probability algorithm for the computation of the Chowforms of the equidimensional components of an algebraic variety. In particular, this gives an alternative procedure for the effective equidimensional decomposition of the variety, since each equidimensional component is characterized by its Chow form. The expected complexity of the algorithm is polynomial in the size and the geometric degree of the input equation system defining the variety. Hence it improves (or meets in some special cases) the complexity of all previous algorithms for computing Chow forms. In addition to this, we clarify the probability and uniformity aspects, which constitutes a further contribution of the paper. The algorithm is based on elimination theory techniques, in line with the geometric resolution algorithm due to M. Giusti, J. Heintz, L. M. Pardo, and their collaborators. In fact, ours can be considered as an extension of their algorithm for zero-dimensional systems to the case of positive-dimensional varieties. The key element for dealing with positive-dimensional varieties is a new Poisson-type product formula. This formula allows us to compute the Chow form of an equidimensional variety from a suitable zero-dimensional fiber. As an application, we obtain an algorithm to compute a subclass of sparse resultants, whose complexity is polynomial in the dimension and the volume of the input set of exponents. As another application, we derive an algorithm for the computation of the (unique) solution of a generic overdetermined polynomial equation system.  相似文献   
7.
Systematic computation of Stark units over nontotally real base fields is carried out for the first time. Since the information provided by Stark's conjecture is significantly less in this situation than the information provided over totally real base fields, new techniques are required. Precomputing Stark units in relative quadratic extensions (where the conjecture is already known to hold) and coupling this information with the Fincke-Pohst algorithm applied to certain quadratic forms leads to a significant reduction in search time for finding Stark units in larger extensions (where the conjecture is still unproven). Stark's conjecture is verified in each case for these Stark units in larger extensions and explicit generating polynomials for abelian extensions over complex cubic base fields, including Hilbert class fields, are obtained from the minimal polynomials of these new Stark units.

  相似文献   

8.
Let E\subset \Bbb R s be compact and let d n E denote the dimension of the space of polynomials of degree at most n in s variables restricted to E . We introduce the notion of an asymptotic interpolation measure (AIM). Such a measure, if it exists , describes the asymptotic behavior of any scheme τ n ={ \bf x k,n } k=1 dnE , n=1,2,\ldots , of nodes for multivariate polynomial interpolation for which the norms of the corresponding interpolation operators do not grow geometrically large with n . We demonstrate the existence of AIMs for the finite union of compact subsets of certain algebraic curves in R 2 . It turns out that the theory of logarithmic potentials with external fields plays a useful role in the investigation. Furthermore, for the sets mentioned above, we give a computationally simple construction for ``good' interpolation schemes. November 9, 2000. Date revised: August 4, 2001. Date accepted: September 14, 2001.  相似文献   
9.
An efficient numerical method is presented for solving the equations of motion for viscous fluids. The equations are discretized on the basis of unstructured finite element meshes and then solved by direct iteration. Advective fluxes are temporarily fixed at each iteration to provide a linearized set of coupled equations which are then also solved by iteration using a fully implicit algebraic multigrid (AMG) scheme. A rapid convergence to machine accuracy is achieved that is almost mesh-independent. The scaling of computing time with mesh size is therefore close to the optimum.  相似文献   
10.
There exist a number of typical and interesting systems and/or models, which possess three-generator Lie-algebraic structure, in atomic physics, quantum optics, nuclear physics and laser physics. The well-known fact that all simple 3-generator algebras are either isomorphic to the algebra sl (2, C) or to one of its real forms enables us to treat these time-dependent quantum systems in a unified way. By making use of both the Lewis-Riesenfeld invariant theory and the invariant-related unitary transformation formulation, the present paper obtains exact solutions of the time-dependent Schr?dinger equations governing various three-generator Lie-algebraic quantum systems. For some quantum systems whose time-dependent Hamiltonians have no quasialgebraic structures, it is shown that the exact solutions can also be obtained by working in a sub-Hilbert-space corresponding to a particular eigenvalue of the conserved generator (i.e., the time-independent invariant that commutes with the time-dependent Hamiltonian). The topological property of geometric phase factors and its adiabatic limit in time-dependent systems is briefly discussed. Received 6 July 2002 / Received in final form 21 October 2002 Published online 11 February 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号