首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
力学   39篇
数学   5篇
物理学   13篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1987年   2篇
  1978年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
1.
2.
To examine the effects of wing morphing on unsteady aerodynamics, deformable flapping plates are numerically studied in a low-Reynolds-number flow. Simulations are carried out using an in-house immersed-boundary-method-based direct numerical simulation (DNS) solver. In current work, chord-wise camber is modeled by a hinge connecting two rigid components. The leading portion is driven by a biological hovering motion along a horizontal stroke plane. The hinged trailing-edge flap (TEF) is controlled by a prescribed harmonic deflection motion. The effects of TEF deflection amplitude, deflection phase difference, hinge location, and Reynolds number on the aerodynamic performance and flow structures are investigated. The results show that the unsteady aerodynamic performance of deformable flapping plates is dominated by the TEF deflection phase difference, which directly affects the strength of the leading-edge vortex (LEV) and thus influences the entire vortex shedding process. The overall lift enhancement can reach up to 26% by tailoring the deflection amplitude and deflection phase difference. It is also found that the role of the dynamic TEF played in the flapping flight is consistent over a range of hinge locations and Reynolds numbers. Results from a low aspect-ratio (AR=2) deformable plate show the same trend as those of 2-D cases despite the effect of the three-dimensionality.  相似文献   
3.
This study proposes an effective numerical model based on the Computational Fluid Dynamics (CFD) approach to obtain the flow structure around a passenger car with wing type rear spoiler. The topology of the test vehicle and grid system is constructed by a commercial package, ICEM/CFD. FLUENT is the CFD solver employed in this study. After numerical iterations are completed, the aerodynamic data and detailed complicated flow structure are visualized using commercial packages, Field View and Tecplot. The wind effect on the aerodynamic behavior of a passenger car with and without a rear spoiler and endplate is numerically investigated in the present study. It is found that the installation of a spoiler with an appropriate angle of attack can reduce the aerodynamic lift coefficient. Furthermore, the installation of an endplate can reduce the noise behind the car. It is clear that the vertical stability of a passenger car and its noise elimination can be improved. Finally, the aerodynamics and aero-acoustics of the most suitable design of spoiler is introduced and analyzed.  相似文献   
4.
Landing gear noise control using perforated fairings   总被引:2,自引:0,他引:2  
Landing gears of commercial aircraft make an important contribution to total aircraft noise in the approach configuration. Using fairings to shield components from high speed impingement reduces noise. Furthermore, perforating these fairings has been confirmed by flight tests to further enable noise reduction. Following an earlier fundamental study of the application of perforated fairings, a study has been performed to investigate and optimize the benefits of bleeding air through landing gear fairings. By means of wind tunnel tests, an aerodynamic and acoustic survey has been performed on a simplified generic main landing gear to explore the influence of (perforated) fairings on the lower part of the gear. The results show that for this specific case, the application of impermeable fairings reduces noise in the mid- and high frequency range by shielding sharp edged components from high velocity impingement. However, below 1 kHz the noise is shown to increase significantly. Application of the perforations is shown to diminish this low frequency increase whilst maintaining the reduction in the mid- and high frequency range. The aerodynamic and acoustic measurements point in the direction of the separated flow of the fairings interacting with the downstream gear components responsible for the low frequency noise increase. Bleeding of the air through the fairings reduces the large scale turbulence in the proximity of these components and hence diminishes the low frequency noise increase.  相似文献   
5.
6.
Using data present in the literature from wind tunnel testing of semi-infinite and infinite rectangular bluff bodies at angle of attack, we develop a simple relation to predict the range of angles of attack where the lift remains approximately constant. This prediction is useful for researchers attempting to develop simplified models of the forces on rectangular bluff bodies. Additionally, prior work has shown that this region of the lift curve is characterized by complex three-dimensional flow, which has consequences for computational simulations.  相似文献   
7.
高速铁路列车系统中的动力学问题   总被引:4,自引:0,他引:4  
王卫东  贺启庸 《力学进展》1995,25(1):134-143
本文系统地讨论了高速铁路列车系统中存在的动力学问题,包括结构动力学、车辆动力学、空气动力学和一些耦合动力问题。重点对高速铁路列车系统中的一些特有动力现象和解决方法进行了分析与介绍,并指出了高速铁路列车系统中各个研究领域的现状和发展方向。   相似文献   
8.
Multicriterion design is gaining importance in aeronautics in order to cope with new needs of society. In the literature, contributions to single discipline and/or single-point design optimization abound. The goal of this paper is to introduce a new approach combining the adjoint method with a formulation derived from game theory for multipoint aerodynamic design problems. Transonic flows around lifting airfoils are analyzed via Euler computations. Airfoil shapes are optimized according to various aerodynamic criteria. The notion of player is introduced. In a competitive Nash game, each player attempts to optimize its own criterion through a symmetric exchange of information with others. A Nash equilibrium is reached when each player, constrained by the strategy of the others, cannot improve further its own criterion. Specific real and virtual symmetric Nash games are implemented to set up an optimization strategy for design under conflict. This work has benefited partially from the support of the National Science Foundation of China Grant NSFC-10372040 and Scientific Research Foundation (SRF) for Returned Overseas Chinese Scholars (ROCS) Grant 2003-091. The first author acknowledges the support of INRIA (Institut National de Recherche en Information et en Automatique), France.  相似文献   
9.
The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.  相似文献   
10.
Bassanini  P.  Casciola  C.M.  Lancia  M.R.  Piva  R. 《Meccanica》1999,34(3):199-229
This review paper presents a unified formulation of the Kutta condition for steady and unsteady flows, implemented by removing all unbounded velocity singularities (of powerlaw and logarithmic type) at the trailing edge, and including nonlinear wakes and thick sweptback wings. A suitable boundary integral approach is adopted and the uniqueness issue is discussed for several wing configurations of interest in aerodynamics.Sommario. Si presenta una formulazione unificata della condizione di Kutta per flussi stazionari e non stazionari, ottenuta imponendo la limitatezza della velocità al bordo d'uscita, e valida nel caso nonlineare anche per ali a freccia. Si utilizza un opportuno approccio integrale al contorno e si discute il problema dell'unicità per svariate configurazioni alari di interesse nelle applicazioni.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号