首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   3篇
  国内免费   12篇
化学   55篇
综合类   8篇
物理学   6篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
通过将莱菌衣藻(Chlamydomonas reinhardtii)6种达草灭抗性突变株分别与野生型株、丧失合成叶绿素b能力的cbnI-43等基因突变株和精氨酸依赖型突变株杂交对其后代进行四分析与随机分析,发现在Nfr-4-Nfr-7突变株中达草灭抗性状只有单一核基因遗传的性质,而在Nfr-1、Nfr-3~Nfr-7抗性株的抗性性状都是由同一个nfr-1基因(norflurazon resisanse)的突变所决定的,而Nfr-4抗性株的抗性性状是由另一滚突变等位基因nfr-2所决定的。在Nfr-1和Nfr-3抗性株中除了nfr-1基因的突变还有nfr-3基因突变的参与。  相似文献   
2.
The MutT pyrophosphohydrolase from E. coli (129 residues) catalyzes the hydrolysis of nucleoside triphosphates (NTP), including 8-oxo-dGTP, by substitution at Pβ, to yield NMP and pyrophosphate. The product, 8-oxo-dGMP is an unusually tight binding, slowly exchanging inhibitor with a KD=52 nM, (ΔG°=−9.8 kcal/mol) which is 6.1 kcal/mol tighter than the binding of dGMP (ΔG°=−3.7 kcal/mol). The higher affinity for 8-oxo-dGMP results from a more favorable ΔHbinding (−32 kcal/mol) despite an unfavorable −TΔS°binding (+22 kcal/mol). The solution structure of the MutT–Mg2+-8-oxo-dGMP complex shows a narrowed, hydrophobic nucleotide-binding cleft with Asn-119 and Arg-78 among the few polar residues. The N119A, N119D, R78K and R78A single mutations, and the R78K+N119A double mutant all showed largely intact active sites, on the basis of small changes in the kinetic parameters of dGTP hydrolysis and in 1H–15N HSQC spectra. However, the N119A mutation profoundly weakened the active site binding of 8-oxo-dGMP by 4.3 kcal/mol (1650-fold). The N119D mutation also weakened 8-oxo-dGMP binding but only by 2.1 kcal/mol (37-fold), suggesting that Asn-119 functioned both as a hydrogen bond donor to C8=O, and a hydrogen bond acceptor from N7H of 8-oxo-dGMP, while aspartate at position −119 functioned as an acceptor of a single hydrogen bond. Much smaller weakening effects (0.3–0.4 kcal/mol) on the binding of dGMP and dAMP were found, indicating specific hydrogen bonding of Asn-119 to 8-oxo-dGMP. While formation of the wild type MutT–Mg2+-8-oxo-dGMP complex slowed the backbone NH exchange rates of 45 residues distributed throughout the protein, the same complex of the N119A mutant slowed the exchange rates of only 11 residues at or near the active site, indicating an increase in conformational flexibility of the N119A mutant. The R78K and R78A mutations weakened the binding of 8-oxo-dGMP by 1.7 and 1.1 kcal/mol, respectively, indicating a lesser role of Arg-78 than of Asn-119 in the selective binding of 8-oxo-dGMP, likely donating a single hydrogen bond to its C6=O. The R78K+N119A double mutant weakened the binding of 8-oxo-dGMP (KIslope=3.1 mM) by 6.5±0.2 kcal/mol which overlaps, within error with the sum of the effects of the two single mutants (6.0±0.3 kcal/mol). Such additive effects of the two single mutants in the double mutant are most simply explained by the independent functioning of Asn-119 and Arg-78 in the binding of 8-oxo-dGMP. Independent functioning of these two residues in nucleotide binding is consistent with their locations in the MutT–Mg2+-8-oxo-dGMP complex, on opposite sides of the active site cleft, with a distance of 8.4±0.5 Å between their side chain nitrogens.  相似文献   
3.
IntroductionElectrontransferreactionsarethekeystepsinphoto synthesis ,respirationandmanyotherbiochemicalprocess es.1Cytochromeb5isaredoxproteinexistingwidelyinnature ,whichactsasanelectron carrierduringvariouselectrontransferprocessesinthebiologicalsystem .2Cytochromeb5isamembraneproteinwithmolecularweightofapproximately 16kDa ,ofwhichthehydrophobicC terminaldomainanchorscytochromeb5tothemem brane ,andthehydrophilicN terminaldomaincontainshemeprostheticgroupandexhibitsthebiologicalfunctionsof…  相似文献   
4.
Pichia stipitis CBS 6054 will grow on d-xylose, d-arabinose, and l-arabinose. d-Xylose and l-arabinose are abundant in seed hulls of maize, and their utilization is important in processing grain residues. To elucidate the degradation pathway for l-arabinose, we obtained a mutant, FPL-MY30, that was unable to grow on d-xylose and l-arabinose but that could grow on d-arabinitol. Activity assays of oxidoreductase and pentulokinase enzymes involved in d-xylose, d-arabinose, and l-arabinose pathways indicated that FPL-MY30 is deficient in d-xylitol dehydrogenase (D-XDH), d- and l-arabinitol dehydrogenases, and d-ribitol dehydrogenase. Transforming FPL-MY30 with a gene for xylitol dehydrogenase (PsXYL2), which was cloned from CBS 6054 (Gen Bank AF127801), restored the D-XDH activity and the capacity for FPL-MY30 to grow on l-arabinose. This suggested that FPL-MY30 is critically deficient in XYL2 and that the d-xylose and l-arabinose metabolic pathways have xylitolas a common intermediate. The capacity for FPL-MY30 to grow on d-arabinitol could proceed through d-ribulose.  相似文献   
5.
TnINEO fusion gene was constructed by fusing 3.4-kbp of quailTnI genomic DNA sequences spanning the promoter to exon 5 and aneo gene in frame. A myoblast cell line was established after transfection of pTnINEO. Since this cell line was passaged several times, a high frequency of neomycin (G418) sensitivity conversion was detected. Two drug-resistant variants were analyzed through genomic Southern blot and S1 nuclease protection assay. One variant has a mutation(s) in the regulatory element that activated the dormantTnI promoter-enhancer in myoblast, and the other has shown the genomic rearrangement. This result presented the possibility of isolating factor(s) that activate the muscle-specificTnI promoter simply by screening drug-resistant cells having appropriate mutations.  相似文献   
6.
Four commercial strains and two mutants of the yeast species Yarrowia lipolytica were screened using batch fermentation. Strain Y. lipolytica A-101-1.14 (induced with UV irradiation) was found to be the most suitable for citric acid production from glucose hydrol (39.9% glucose and 2.1% other sugars), a byproduct of glucose production from potato starch. The specific rate of total citric and isocitric acid production was 0.138 g/g.h, the yield on consumed glucose 0.93 g/g, and the productivity achieved was as high as 1.25 g/L.h. All of the tested yeast strains were able to utilize only the glucose from the glucose hydrol medium. Thus, some residual higher oligosaccharides remained in the process effluent.  相似文献   
7.
The activity of enzyme I (EI), the first protein in the bacterial PEP:sugar phosphotransferase system, is regulated by a monomer–dimer equilibrium where a Mg2+-dependent autophosphorylation by PEP requires the homodimer. Using inactive EI(H189A), in which alanine is substituted for the active-site His189, substrate binding effects can be separated from those of phosphorylation. Whereas 1 mM PEP (with 2 mM Mg2+) strongly promotes dimerization of EI(H189A) at pH 7.5 and 20 °C, 5 mM pyruvate (with 2 mM Mg2+) has the opposite effect. A correlation between the coupling of N- and C-terminal domain unfolding, measured by differential scanning calorimetry, and the dimerization constant for EI, determined by sedimentation equilibrium, is observed. That is, when the coupling between N- and C-terminal domain unfolding produced by 0.2 or 1.0 mM PEP and 2 mM Mg2+ is inhibited by 5 mM pyruvate, the dimerization constant for EI(H189A) decreases from >108 to <5 × 105 or 3 × 107 M−1, respectively. With 2 mM Mg2+ at 15–25 °C and pH 7.5, PEP has been found to bind to one site/monomer of EI(H189A) with KA′106 M−1G′=−33.7±0.2 kJ mol−1 and ΔH=+16.3 kJ mol−1 at 20 °C with ΔCp=−1.4 kJ K−1 mol−1). The binding of PEP to EI(H189A) is synergistic with that of Mg2+. Thus, physiological concentrations of PEP and Mg2+ increase, whereas pyruvate and Mg2+ decrease the amount of dimeric, active, dephospho-enzyme I.  相似文献   
8.
Two endoglucanases (EGs), EG A and EG B, were purified to homogeneity from Penicillium occitanis mutant Pol 6 culture medium. The molecular weights of EG A and EG B were 31,000 and 28,000 kDa, respectively. The pI was about 3 for EG A and 7.5 for EG B. Optimal activity was obtained at pH 3.5 for both endoglucanases. Optimal temperature for enzyme activity was 60 degrees C for EG A and 50 degrees C for EG B. EG A was thermostable at 60 degrees C and remained active after 1 h at 70 degrees C. EGs hydrolyzed carboxymethylcellulose, phosphoric acid swollen cellulose, and beta-glucan efficiently, whereas microcrystalline cellulose (Avicel) and laminarin were poorly hydrolyzed. Only EG B showed xylanase activity. Furthermore, these EGs were insensitive to the action of glucose and cellobiose but were inhibited by the divalent cations Hg2+, Co2+, and Mn2+.  相似文献   
9.
Shotgun proteomics technology has matured in the research laboratories and is poised to enter clinical laboratories. However, the road to this transition is sprinkled with major technical unknowns such as long‐term stability of the platform, reproducibility of the technology and clinical utility over traditional antibody‐based platforms. Further, regulatory bodies that oversee the clinical laboratory operations are unfamiliar with this new technology. As a result, diagnostic laboratories have avoided using shotgun proteomics for routine diagnostics. In this perspectives article, we describe the clinical implementation of a shotgun proteomics assay for amyloid subtyping, with a special emphasis on standardizing the platform for better quality control and earning clinical acceptance. This assay is the first shotgun proteomics assay to receive regulatory approval for patient diagnosis. The blueprint of this assay can be utilized to develop novel proteomics assays for detecting numerous other disease pathologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
Experimental mathematical designs were applied for optimization of a nutrient medium for biosynthesis of the antifungal antibiotic AK-111-81 by phosphate-deregulated mutant of Streptomyces hygroscopicus 111-81. Antifungal antibiotic AK-111-81 possesses well-expressed activity against Fusarium graminearum and other phytopathogenic fungi. The level of the production of the antibiotic AK-111-81 on this medium is more than three times higher than on the initial medium. The optimized quantitative composition of the nutrient culture media is (g/l): glucose, 20; soy meal, 18; ammonium succinate, 3; CaCO3, 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号