首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  国内免费   1篇
化学   22篇
综合类   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1988年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
Traditionally, due to different hardware requirements, nuclear magnetic resonance (NMR) has developed as two separate fields: one dealing with solids, and one with solutions. Comprehensive multiphase (CMP) NMR combines all electronics and hardware (magic angle spinning [MAS], gradients, high power Radio Frequency (RF) handling, lock, susceptibility matching) into a universal probe that permits a comprehensive study of all phases (i.e., liquid, gel-like, semisolid, and solid), in intact samples. When applied in vivo, it provides unique insight into the wide array of bonds in a living system from the most mobile liquids (blood, fluids) through gels (muscle, tissues) to the most rigid (exoskeleton, shell). In this tutorial, the practical aspects of in vivo CMP NMR are discussed including: handling the organisms, rotor preparation, sample spinning, water suppression, editing experiments, and finishes with a brief look at the potential of other heteronuclei (2H, 15N, 19F, 31P) for in vivo research. The tutorial is aimed as a general resource for researchers interested in developing and applying MAS-based approaches to living organisms. Although the focus here is CMP NMR, many of the approaches can be adapted (or directly applied) using conventional high-resolution magic angle spinning, and in some cases, even standard solid-state NMR probes.  相似文献   
2.
ABSTRACT

Biocides are multi-component products used to control undesired and harmful organisms able to affect human or animal health or to damage natural and manufactured products. Because of their widespread use, aquatic and terrestrial ecosystems could be contaminated by biocides. The environmental impact of biocides is evaluated through eco-toxicological studies with model organisms of terrestrial and aquatic ecosystems. We focused on the development of in silico models for the evaluation of the acute toxicity (EC50) of a set of biocides collected from different sources on the freshwater crustacean Daphnia magna, one of the most widely used model organisms in aquatic toxicology. Toxicological data specific for biocides are limited, so we developed three models for daphnid toxicity using different strategies (linear regression, random forest, Monte Carlo (CORAL)) to overcome this limitation. All models gave satisfactory results in our datasets: the random forest model showed the best results with a determination coefficient r2 = 0.97 and 0.89, respectively, for the training (TS) and the validation sets (VS) while linear regression model and the CORAL model had similar but lower performance (r2 = 0.83 and 0.75, respectively, for TS and VS in the linear regression model and r2 = 0.74 and 0.75 for the CORAL model).  相似文献   
3.
4.
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.  相似文献   
5.
取代芳香族化合物生物活性的拓扑学   总被引:1,自引:0,他引:1  
定义并计算了取代芳香族化合物的价连接性指数^mH,研究了取代芳香族化合物结构与其对发光菌、大型蚤、呆鲦鱼生物活性参数的关系,由化合物对水生生物的急性毒性与^mH的线性回归方程得出的预测值与实验测定值之间能较好地吻合。  相似文献   
6.
The potential effects of nanoscale CuO(nCuO),nanoscale ZnO(nZnO)and their mixtures on Daphnia magna were investigated,including 48-h acute toxicity and 21-d chronic toxicity tests as well as a feeding ...  相似文献   
7.
Abstract

Ethoxylated alcohols are the most extensively used nonionic surfactants in detergent products. The application of QSAR to their aquatic toxicity is complicated by the fact that they are multicomponent mixtures, the parent alcohols being often mixtures of isomers and homologues, each one being ethoxylated to varying degrees. A spreadsheet method for calculation of aquatic toxicity of such nonionic surfactant mixtures is presented. The method is based on a combination of the Könemann narcosis QSAR and mixture toxicity equations based on the principle of concentration addition. Log P values used in the spreadsheet calculations are themselves calculated by spreadsheet formulae based on the Leo and Hansch method modified by incorporation of the position dependent branching factor originally applied to linear alkylbenzene sulphonates. Close agreement between calculated and experimental EC50 values (48 hr Daphnia tests) is obtained for a range of ethoxylated alcohols having a diversity of branching patterns, carbon numbers and degrees of ethoxylation. The effects of increasing carbon number (decreasing EC50), branching (increasing EC50) and increasing degree of ethoxylation (increasing EC50) are all quantified.  相似文献   
8.
In this study, externally validated quantitative structure–toxicity relationship (QSTR) models were developed for toxicity of cosmetic ingredients on three different ecotoxicologically relevant organisms, namely Pseudokirchneriella subcapitata, Daphnia magna and Pimephales promelas following the OECD guidelines. The final models were developed by partial least squares (PLS) regression technique, which is more robust than multiple linear regression. The obtained model for P. subcapitata shows that molecular size and complexity have significant impacts on the toxicity of cosmetics. In case of P. promelas and D. magna, we found that the largest contribution to the toxicity was shown by hydrophobicity and van der Waals surface area, respectively. All models were validated using both internal and test compounds employing multiple strategies. For each QSTR model, applicability domain studies were also performed using the “Distance to Model in X-space” method. A comparison was made with the ECOSAR predictions in order to prove the good predictive performances of our developed models. Finally, individual models were applied to predict toxicity for an external set of 596 personal care products having no experimental data for at least one of the endpoints, and the compounds were ranked based on a decreasing order of toxicity using a scaling approach.  相似文献   
9.
10.
Advanced oxidation processes (AOPs) have been introduced to deal with different types of water pollution. They cause effective chemical destruction of pollutants, yet leading to a mixture of transformation by-products, rather than complete mineralization. Therefore, the aim of our study was to understand complex degradation processes induced by different AOPs from chemical and ecotoxicological point of view. Phenol, 2,4-dichlorophenol, and pentachlorophenol were used as model pollutants since they are still common industrial chemicals and thus encountered in the aquatic environment. A comprehensive study of efficiency of several AOPs was undertaken by using instrumental analyses along with ecotoxicological assessment. Four approaches were compared: ozonation, photocatalytic oxidation with immobilized nitrogen-doped TiO2 thin films, the sequence of both, as well as electrooxidation on boron-doped diamond (BDD) and mixed metal oxide (MMO) anodes. The monitored parameters were: removal of target phenols, dechlorination, transformation products, and ecotoxicological impact. Therefore, HPLC–DAD, GC–MS, UHPLC–MS/MS, ion chromatography, and 48 h inhibition tests on Daphnia magna were applied. In addition, pH and total organic carbon (TOC) were measured. Results show that ozonation provides by far the most suitable pattern of degradation accompanied by rapid detoxification. In contrast, photocatalysis was found to be slow and mild, marked by the accumulation of aromatic products. Preozonation reinforces the photocatalytic process. Regarding the electrooxidations, BDD is more effective than MMO, while the degradation pattern and transformation products formed depend on supporting electrolyte.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号