首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8798篇
  免费   1468篇
  国内免费   1022篇
化学   8072篇
晶体学   76篇
力学   61篇
综合类   61篇
数学   147篇
物理学   2871篇
  2024年   35篇
  2023年   120篇
  2022年   279篇
  2021年   364篇
  2020年   482篇
  2019年   340篇
  2018年   321篇
  2017年   297篇
  2016年   375篇
  2015年   379篇
  2014年   400篇
  2013年   779篇
  2012年   587篇
  2011年   505篇
  2010年   368篇
  2009年   453篇
  2008年   486篇
  2007年   597篇
  2006年   514篇
  2005年   470篇
  2004年   401篇
  2003年   389篇
  2002年   301篇
  2001年   269篇
  2000年   274篇
  1999年   233篇
  1998年   197篇
  1997年   166篇
  1996年   155篇
  1995年   143篇
  1994年   114篇
  1993年   108篇
  1992年   101篇
  1991年   70篇
  1990年   53篇
  1989年   38篇
  1988年   28篇
  1987年   12篇
  1986年   19篇
  1985年   12篇
  1984年   10篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1979年   2篇
  1977年   4篇
  1975年   3篇
  1974年   12篇
  1973年   3篇
  1971年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
2.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
3.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
4.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
5.
In this study, multiwalled carbon nanotube (MWCNT) was modified by the pyridine group using a silane agent and characterized by infrared spectroscopy (IR), thermal analysis (TG/DTA), and elemental analysis (CHN) and scanning electron microscopy (SEM). The application of this sorbent was investigated in determination of lead ions in aqueous samples, using flame atomic absorption spectrometry (FAAS). Through this study, different parameters such as pH and sample flow rate on adsorption process and eluent concentration, volume and flow rate were optimized. The limit of detection (LOD), the relative standard deviation and the recovery of the method were 2 ng mL?1, 1.3% and 99.7%, respectively. Two standard reference materials (NIST 1571 and NIST 1572) were used to verify accuracy of this method. Finally, the sorbent was successfully applied for extraction and determination of low levels of Pb(II) ions in aqueous samples.  相似文献   
6.
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers comprised mainly of carbon atoms, and are versatile for the integration of heteroatoms such as B, O, and N into the skeletons. The designable structure and abundant composition render COFs useful as precursors for heteroatom-doped porous carbons for energy storage and conversion. Herein, we describe a multifunctional electrochemical catalyst obtained through pyrolysis of a bimetallic COF. The catalyst possesses hierarchical pores and abundant iron and cobalt nanoparticles embedded with standing carbon layers. By integrating these features, the catalyst exhibits excellent electrochemical catalytic activity in the oxygen reduction reaction (ORR), with a 50 mV positive half-wave potential, a higher limited diffusion current density, and a much smaller Tafel slope than a Pt-C catalyst. Moreover, the catalyst displays superior electrochemical performance toward the hydrogen evolution reaction (HER), with overpotentials of −0.26 V and −0.33 V in acidic and alkaline aqueous solution, respectively, at a current density of 10 mA cm−2. The overpotential in the catalysis of the oxygen evolution reaction (OER) was 1.59 V at the same current density.  相似文献   
7.
8.
The practical application of Shilov-type Pt catalysis to the selective hydroxylation of terminal aliphatic C−H bonds remains a formidable challenge, due to difficulties in replacing PtIV with a more economically viable oxidant, particularly O2. We report the potential of employing FeCl2 as a suitable redox mediator to overcome the kinetic hurdles related to the direct use of O2 in the Pt reoxidation. For the selective conversion of butyric acid to γ-hydroxybutyric acid (GHB), a significantly enhanced catalyst activity and stability (turnover numbers (TON)>30) were achieved under 20 bar O2 in comparison to current state-of-the-art systems (TON<10). In this regard, essential reaction parameters affecting the overall activity were identified, along with specific additives to attain catalyst stability at longer reaction times. Notably, deactivation by reduction to Pt0 was prevented by the addition of monodentate pyridine derivatives, such as 2-fluoropyridine, but also by introducing varying partial pressures of N2 in the gaseous atmosphere. Finally, stability tests revealed the involvement of PtII and FeCl2 in catalyzing the non-selective overoxidation of GHB. Accordingly, in situ esterification with boric acid proved to be a suitable strategy to maintain enhanced selectivities at much higher conversions (TON>60). Altogether, a useful catalytic system for the selective hydroxylation of primary aliphatic C−H bonds with O2 is presented.  相似文献   
9.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   
10.
二氧化钒薄膜的低温制备及其性能研究   总被引:12,自引:0,他引:12       下载免费PDF全文
针对VO2薄膜在微测辐射热计上的应用,采用射频反应溅射法,在室温下制备氧化钒薄膜;研究了氧分压对薄膜沉积速率、电学性质及成分的影响.通过调节氧分压,先获得成分接近VO2的非晶化薄膜,再在400℃空气中氧化退火,便可制得高电阻温度系数,低电阻率的VO2薄膜,电阻温度系数约为-4%/℃,薄膜方块电阻为R为100—300kΩ;薄膜在室温下沉积,400℃下退火的制备方法与微机电加工(micro electromechanic 关键词: 二氧化钒 电阻温度系数 氧分压 射频反应溅射法  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号