首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   1篇
化学   32篇
综合类   1篇
物理学   2篇
  2018年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  1998年   2篇
  1992年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(13):1063-1071
Abstract

A rapid, specific and sensitive reversed-phase liquid chromatographic (LC) assay for the quantitative determination of indomethacin in serum without extraction was developed. Chromatographic separation using flunixin meglumine as the internal standard was achieved on octadecylsilane-coated particles with a mobile phase of 0.15 M acetate buffer pH 3.0 (50% v/v), acetonitrile (30% v/v) and methanol (20% v/v). The recovery of indomethacin from serum samples in the concentration range of 0.1-25 μg/ml was 95.5 ± 5.8% and as little as 100 ng/ml of indomethacin in serum samples can be quantitated by this procedure. A serum level versus time profile of dog with intravenously administered indomethacin demonstrated the applicability of the assay.  相似文献   
2.
In the present paper, kinetics of alkaline degradation of well known drug, indomethacin (2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetic acid), was studied in presence of excess [NaOH]. The rate of hydrolysis of substrate was independent of the [indomethacin] though it increased linearly with increasing the hydroxide ion concentration with a positive slope, suggesting the following rate law: kobs = k1[OH]. Cationic surfactants having non-reactive ions (cetyltrimethylammonium bromide, CTAB and cetyltrimethylammonium sulfate (CTA)2SO4) first increased the rate constants at lower concentrations and then decreased it at higher concentrations while in case of the surfactant with reactive counterions (cetyltrimethylammonium hydroxide, CTAOH) the rate increases sharply at lower concentrations of surfactant until it reaches to a plateau in contrast to the appearance of maxima in case of CTAB and (CTA)2SO4. Anionic surfactant, sodium dodecyl sulfate (SDS), inhibited the reaction rate at all concentrations used in the study. Pseudophase ion-exchange model was used for analyzing the effect of cationic micelles while the inhibition by SDS micelles was fitted using the Menger–Portnoy model. The effect of salts (NaCl, NaBr and (CH3)4NBr) was also seen on the hydrolysis of indomethacin and it was found that all salts inhibited the rate of reaction. The inhibition followed the trend NaCl < NaBr < (CH3)4NBr.  相似文献   
3.
(Solid + liquid) equilibrium data for indomethacin (IMC) and nicotinamide (NCT) in both methanol (MeOH) and methanol/ethyl acetate (EA) mixture were determined using a static method at T = (298.15 and 313.15) K under atmospheric pressure. The 1:1 (IMC + NCT) co-crystal and IMC·MeOH were found in both systems under conditions investigated. The solubility of the 1:1 (IMC + NCT) co-crystal was correlated using a mathematical model consisting of both solubility product and a complexation process. Solubility of (IMC + NCT) co-crystals as a function of co-former (NCT) concentration was evaluated. It was found that temperature has a significant effect on the formation of methanol solvate in the systems investigated. Solvate formation could be suppressed either by increasing temperature or using solvent mixtures. Additionally, the solvent mixture could level out the solubility differences between IMC and NCT, resulting in larger and more symmetric regions for the (IMC + NCT) co-crystal, which would be helpful to the development of the co-crystallization process for the 1:1 (IMC + NCT) co-crystal.  相似文献   
4.
Functionalized indoles are recurrent motifs in bioactive natural products and pharmaceuticals. While transition metal‐catalyzed carbene transfer has provided an attractive route to afford C3‐functionalized indoles, these protocols are viable only in the presence of N‐protected indoles, owing to competition from the more facile N−H insertion reaction. Herein, a biocatalytic strategy for enabling the direct C−H functionalization of unprotected indoles is reported. Engineered variants of myoglobin provide efficient biocatalysts for this reaction, which has no precedents in the biological world, enabling the transformation of a broad range of indoles in the presence of ethyl α‐diazoacetate to give the corresponding C3‐functionalized derivatives in high conversion yields and excellent chemoselectivity. This strategy could be exploited to develop a concise chemoenzymatic route to afford the nonsteroidal anti‐inflammatory drug indomethacin.  相似文献   
5.
The intercalation of indomethacin into the interlayer gallery of layered zinc hydroxide (LZH) has been successfully executed using the simple ion exchange approaches. The synthesized intercalation compound, indomethacin-LZH nanohybrid, was characterized using PXRD, FTIR, SEM, BET, and STA. From the PXRD results, the intercalation of indomethacin anions into the interlayer gallery of LZH was successful; showing the formation of a new peak at lower 2θ with a basal spacing of 21.96?Å. FTIR analysis of the nanohybrid further supported the presence of indomethacin in the interlayer of the indomethacin-LZH nanohybrid. STA analysis confirms that the nanohybrid has higher thermal stability than pure indomethacin. The in vitro release mechanism of the indomethacin anions from the indomethacin-LZH nanohybrid showed slow release, with 95% and 78% release in phosphate buffer saline (PBS) solution at pH 4.8 and 7.4, respectively. The release behavior of indomethacin from its intercalation compounds in PBS solution at pH 4.8 and 7.4 follows the Higuchi model. In addition, the nanohybrid treated with normal fibroblast cell line shows that it reduces cell viability in a dose and time-dependent manner. This study shows that the high potential of the nanohybrid as an encapsulated material for the controlled release formulation of nonsteroidal anti-inflammatory (NASID) anions.  相似文献   
6.
In the present work, an automated on-line electrochemically controlled in-tube solid-phase microextraction (EC-in-tube SPME) coupled with HPLC-UV was developed for the selective extraction and preconcentration of indomethacin as a model analyte in biological samples. Applying an electrical potential can improve the extraction efficiency and provide more convenient manipulation of different properties of the extraction system including selectivity, clean-up, rate, and efficiency. For more enhancement of the selectivity and applicability of this method, a novel molecularly imprinted polymer coated tube was prepared and applied for extraction of indomethacin. For this purpose, nanostructured copolymer coating consisting of polypyrrole doped with ethylene glycol dimethacrylate was prepared on the inner surface of a stainless-steel tube by electrochemical synthesis. The characteristics and application of the tubes were investigated. Electron microscopy provided a cross linked porous surface and the average thickness of the MIP coating was 45 μm. Compared with the non-imprinted polymer coated tubes, the special selectivity for indomethacin was discovered with the molecularly imprinted coated tube. Moreover, stable and reproducible responses were obtained without being considerably influenced by interferences commonly existing in biological samples. Under the optimal conditions, the limits of detection were in the range of 0.07–2.0 μg L−1 in different matrices. This method showed good linearity for indomethacin in the range of 0.1–200 μg L−1, with coefficients of determination better than 0.996. The inter- and intra-assay precisions (RSD%, n = 3) were respectively in the range of 3.5–8.4% and 2.3–7.6% at three concentration levels of 7, 70 and 150 μg L−1. The results showed that the proposed method can be successfully applied for selective analysis of indomethacin in biological samples.  相似文献   
7.
运用伏安法研究了吲哚美辛在单壁碳纳米管修饰电极上的电化学行为.在0.1 mol/L HAc-NaAc缓冲溶液(pH 4.5)中,吲哚美辛于0.91 V (vs.SCE)电位处有一个峰形很好的氧化峰.与裸玻碳电极相比,吲哚美辛在修饰电极上的电位正移了约30 mV,峰电流增加了近10倍,表明该修饰电极对吲哚美辛有较强的电催化作用.搅拌条件下开路富集2 min,氧化峰电流与吲哚美辛在5.5×10-7~1.1×10-5 mol/L浓度范围内呈良好的线性关系,检出限为1.1×10-7 mol/L.该方法可用于药剂中吲哚美辛的分析.  相似文献   
8.
Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the 1H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg−1) or co-administration with cimetidine (100 mg kg−1), which protects against GI damage. The 1H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg−1) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by NSAIDs can be screened in the preclinical stage of drug development using a NMR based metabolomics approach.  相似文献   
9.
郁金对胃平滑肌条运动的影响   总被引:1,自引:0,他引:1  
目的:观察利胆药物——郁金对兔离体胃平滑肌的影响.方法:取兔胃肌条,安置在各恒温灌流肌槽中并用BL-310生物技能实验系统记录胃各部平滑肌条的收缩活动.结果:郁金显著升高兔胃底和胃体纵行肌条张力,减小胃体收缩波平均振幅,并有剂量依赖关系.结论:郁金对胃肌条收缩活动具有明显的兴奋作用,这种兴奋作用部分经由胆碱能M受体介导.  相似文献   
10.
Cholesterol-modified glycol chitosan (CHGC) conjugate was synthesized and characterized by FTIR and 1H NMR. The degree of substitution (DS) was 6.7 cholesterol groups per 100 sugar residues of glycol chitosan. CHGC formed self-aggregated nanoparticles with a roughly spherical shape and a mean diameter of 228 nm by probe sonication in aqueous medium. The physicochemical properties of the self-aggregated nanoparticles were studied using dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence spectroscopy. The critical aggregation concentration (CAC) of self-aggregated nanoparticles in aqueous solution was 0.1223 mg/mL. Indomethacin (IND), as a model drug, was physically entrapped into the CHGC nanoparticles by dialysis method. The characteristics of IND-loaded CHGC (IND-CHGC) nanoparticles was analyzed using DLS, TEM and high performance liquid chromatography (HPLC). The IND-CHGC nanoparticles were almost spherical in shape and their size increased from 275 to 384 nm with the IND-loading content increasing from 7.14% to 16.2%. The in vitro release behavior of IND from CHGC nanoparticles was studied by a dialysis method in phosphate buffered saline (PBS, pH 7.4). IND was released in a biphasic way. The initial rapid release in 2 h and slower release for up to 12 h were observed. The results indicated that CHGC nanoparticles had a potential as a drug delivery carrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号