首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   28篇
  国内免费   195篇
化学   126篇
晶体学   1篇
力学   1篇
综合类   1篇
数学   1篇
物理学   513篇
  2024年   11篇
  2023年   21篇
  2022年   20篇
  2021年   23篇
  2020年   46篇
  2019年   51篇
  2018年   35篇
  2017年   28篇
  2016年   35篇
  2015年   32篇
  2014年   39篇
  2013年   41篇
  2012年   70篇
  2011年   81篇
  2010年   43篇
  2009年   23篇
  2008年   10篇
  2007年   13篇
  2006年   7篇
  2005年   7篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
排序方式: 共有643条查询结果,搜索用时 15 毫秒
1.
The high-pressure structures and properties of MH2 (M = Nb, Ta) are explored through an ab initio evolutionary algorithm for crystal structure prediction and first-principles calculations. It is found that NbH2 undergoes a phase transition from a cubic Fm3¯m structure with regular NbH8 cubes to an orthorhombic Pnma structure with fascinating distorted NbH9 tetrakaidecahedrons at 48.8 GPa, while the phase transition pressure of TaH2 from a hexagonal P63mc phase with slightly distorted TaH7 decahedron to an orthorhombic Pnma phase with attractive distorted TaH9 tetrakaidecahedrons is about 90.0 GPa. Besides, the calculated electronic band structure and density of states demonstrate that all of these structures are metallic. The Poisson’s ratio, electron localization function, and Bader charge analysis suggest that these phases possess dominant ionic bonding character with the effective charges transferring from the metal atom to H. From our electron–phonon calculations, the calculated superconducting critical temperature Tc of the Pnma-NbH2 is 6.903 K at 50 GPa. Finally, via the quasi-harmonic approximation method, the phase diagrams at pressure up to 300 GPa and temperature up to 1000 K of MH2 (M = Nb, Ta) are established, where the transition pressure of Fm3¯m-NbH2 → Pnma-NbH2 and P63mc-TaH2 → Pnma-TaH2 were found to decrease with increasing temperature.  相似文献   
2.
The stability and electronic structure of perovskite hydrides ABH3 were investigated by means of first-principles density functional calculations. Two types of perovskite hydrides are distinguished: (1) When A and B are alkali and alkaline earth metals, the hydrides are ionic compounds with calculated band gaps of around 2 eV and higher. Their stability trend follows basically the concept of Goldschmidt's tolerance factor. (2) When A is one of the heavier alkaline earth metals (Ca, Sr, Ba) and B a transition metal, stable compounds ABH3 result only when B is from the Fe, Co, or Ni groups. This stability trend is basically determined by effects associated with d band filling of both the transition metal and the hydride. In contrast to group (1) perovskites, the transition metal-containing compounds are metals. The synthesis of CaNiH3 and its structure determination from CaNiD3 is reported. This compound is a type (2) perovskite hydride with a fully occupied hydrogen position (CaNiD3: a=3.551(4) Å, dNi-D=1.776(2) Å). Its stability is discussed with respect to transition metal hydrides with complex anions (e.g., Mg2NiH4, Na2PdH2, Sr2PdH4).  相似文献   
3.
宽带隙(3.83 eV)半导体光催化材料InNbO4在紫外光作用下具有分解水和降解有机物的性能。最近实验发现了N掺杂InNbO4具有可见光下分解水制氢的活性。为了从理论上解释这一实验现象,本文采用基于密度泛函理论的第一性原理计算了N掺杂对InNbO4的能带结构、态密度和光学性质的影响。分析能带结构可得,N掺杂后在InNbO4的价带(O 2p)上方形成N 2p局域能级,导致电子跃迁所需的能量减小。吸收光谱表明,N掺杂后InNbO4的光吸收边出现了红移,实现了可见光吸收。  相似文献   
4.
A first-principles investigation of the origin of ferroelectricity in the Aurivillius compound Bi2VO5.5 is presented. Calculations with the density functional theory, in conjunction with the modern theory of polarization, allowed us to study the structural, electronic, and polar properties of two configurations built with oxygen vacancies, causing a charge imbalance and a subsequent displacement of the ions, generating two maximum polarizations, one of 14.75 μC/cm2 and one of 4.31 μC/cm2 along [011] direction. Electron localization function schemes were used to identify the asymmetry of charges in (001), (010) and (100) planes. The results obtained in this study establish that the origin of ferroelectricity is due to the displacement of the ions caused by oxygen vacancies and the asymmetric distribution of the isolated pair of Bi ions. On the other hand, the bandgap calculations and the results of Ps establish that Bi2VO5.5 is a candidate ferro-photovoltaic material.  相似文献   
5.
Photocatalytic reduction of CO2 is one important approach to alleviate greenhouse gas emission and energy crisis, which has gained huge attention in the past decades. However, the lack of understanding complex reaction mechanism impedes new catalysts design. It is also very difficult to understand the mechanism by using only experimental approaches. For this concern, theoretical calculations can effectively supplement the experimental deficiency and thus play an important role. Recently theoretical calculations have been performed on adsorption, migration and reduction of CO2 molecule on the photocatalyst surface, leading to useful information that have contributed greatly to this field. This review summarizes recent advances in first-principles calculations about CO2 photoreduction over various semiconductor photocatalysts like metal oxides, sulfides and g-C3N4. The methods, models, adsorption and reaction pathways have been discussed in detail. The perspective about future investigation on the photocatalytic reduction of CO2 using first principles calculations is also presented.  相似文献   
6.
Owing to the unique structural, electronic, and physico-chemical properties, molybdenum clusters are expected to play an important role in future nanotechnologies. However, their ground states are still under debate. In this study, the crystal structure analysis by particle swarm optimization (CALYPSO) approach is used for the global minimum search, which is followed by first-principles calculations, to detect an obvious dimerization tendency in Mo\begin{document}$ _n $\end{document} (\begin{document}$ n $\end{document} = 2\begin{document}$ - $\end{document}18) clusters when the 4s and 4p semicore states are not regarded as the valence states. Further, the clusters with even number of atoms are usually magic clusters with high stability. However, after including the 4s and 4p electrons as valence electrons, the dimerization tendency exhibits a drastic reduction because the average hybridization indices \begin{document}$ H_{ \rm{sp}} $\end{document}, \begin{document}$ H_{ \rm{sd}} $\end{document}, and \begin{document}$ H_{ \rm{pd}} $\end{document} are reduced significantly. Overall, this work reports new ground states of Mo\begin{document}$ _n $\end{document} (\begin{document}$ n $\end{document} = 11, 14, 15) clusters and proves that semicore states are essential for Mo\begin{document}$ _n $\end{document}  相似文献   
7.
《中国化学快报》2021,32(9):2648-2658
MXenes are a group of recently discovered 2D materials and have attracted extensive attention since their first report in 2011; they have shown excellent prospects for energy storage applications owing to their unique layered microstructure and tunable electrical properties. One major feature of MXenes is their tailorable surface terminations (e.g., −F, −O, −OH). Numerous studies have indicated that the composition of the surface terminations can significantly impact the electrochemical properties of MXenes. Nonetheless, the underlying mechanisms are still poorly understood, mainly because of the difficulties in quantitative analysis and characterization. This review summarizes the latest research progress on MXene terminations. First, a systematic introduction to the approaches for preparing MXenes is presented, which generally dominates the surface terminations. Then, theoretical and experimental efforts regarding the surface terminations are discussed, and the influence of surface terminations on the electronic and electrochemical properties of MXenes are generalized. Finally, we present the significance and research prospects of MXene terminations. We expect this review to encourage research on MXenes and provide guidance for usingthese materials for batteries and supercapacitors.  相似文献   
8.
《中国化学快报》2021,32(10):3149-3154
In this paper, a novel BC3N2 monolayer has been found with a graphene-like structure using the developed particle swarm optimization algorithm in combination with ab initio calculations. The predicted structure meets the thermodynamical, dynamical, and mechanical stability requirements. Interestingly, the BC3N2 plane shows a metallic character. Importantly, BC3N2 has an in-plane stiffness comparable to that of graphene. We have also investigated the adsorption characteristics of CO2 on pristine monolayer and Mo functionalized monolayer using density functional theory. Subsequently, electronic structures of the interacting systems (CO2 molecule and substrates) have been preliminarily explored. The results show that Mo/BC3N2 has a stronger adsorption capacity towards CO2 comparing with the pristine one, which can provide a reference for the further study of the CO2 reduction mechanism on the transition metal-functionalized surface as well as the new catalyst’s design.  相似文献   
9.
Runyue Li 《哲学杂志》2016,96(35):3654-3670
First-principles calculations were performed to investigate the structural properties, phase stabilities, elastic properties and thermal conductivities of MP (M = Ti, Zr, Hf) monophosphides. These monophosphides are thermodynamically and mechanically stable. Values for the bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were calculated by Voigt–Reuss–Hill approximation. The mechanical anisotropy was discussed via several anisotropy indices and three-dimensional (3D) surface constructions. The order of elastic anisotropy is ZrP > HfP > TiP. The minimum thermal conductivities of these monophosphides were investigated using Clarke’s model and Cahill’s model. The results revealed that these monophosphides are suitable for use as thermal insulating materials and that their minimum thermal conductivities are anisotropic.  相似文献   
10.
The electronic structures and magnetic behaviors of graphene with 5d series transition metal atom substitutions are investigated by performing first-principles calculations. All the impurities are tightly bonded to single vacancy in a graphene sheet. The substitutions of La and Ta lead to Fermi level shifting to valence and conduction band, respectively. Both the two substitutions result in metallic properties. Moreover, the Hf, Os and Pt-substituted systems exhibit semiconductor properties, while the Re and Ir-substituted ones exhibit robust half-metallic properties. Interestingly, W-substituted system shows dilute magnetic semiconductor property. On the other hand, the substitution of Ta, W, Re and Ir induce 0.86 μB, 2 μB, 1 μB and 0.99 μB magnetic moment, respectively. Our studies demonstrate that the 5d series transition metal substituted graphene have potential applications in nanoelectronics, spintronics and magnetic storage devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号