首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  国内免费   2篇
化学   26篇
力学   2篇
综合类   1篇
数学   5篇
物理学   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   8篇
  2010年   2篇
  2009年   9篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  1998年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Literature lists a number of counter-current chromatography (CCC) models that can predict the retention time and to a certain extent the peak width of a solute eluting from a CCC column. The approach described in this paper distinguishes itself from previous reports by relating all model parameters directly to column dimensions and experimental settings. Most importantly, this model can predict a chromatogram from scratch without resorting to traditional calibration using empirical values. The model validation with experimental results obtained across a range of CCC instruments demonstrated that the solute retention time, peak width, and peak resolution could be predicted within reasonable accuracy. Additionally, the effect of several process parameters, such as mobile phase flow rate, rotational speed of the column or β-value, showed that the model is robust and applicable to a wide range of CCC instruments. Overall, this model proved to be a useful tool for parameter estimation and, most significantly, separation optimisation.  相似文献   
2.
A numerical model is developed to describe the separation process of countercurrent chromatography (CCC) in this work. The theory of countercurrent extraction table (TCCET) is first proposed to calculate concentration distributions of chemical components in the CCC, which is essential for a numerical model to describe the dynamic equilibrium of mass transfer. According to the theory of countercurrent extraction, the concentration in chromatography obeys binomial distribution, while the outflow from the n-th stage is a negative binomial distribution. As a result of the central limit theorem, they will obey normal distribution for sufficiently large n. Row-stage ratio (R(RS)) is then defined to determine the K value or retention time because it has a linear relationship to K value and retention time. The stage for a certain K value can be subsequently obtained with a very simple form, n(k)=1/(2piq(k)X(2)(k, max)), which can be calculated from the peak height obtained from experiments. Finally, the actual stage for a separation chromatogram can be acquired with using this simple expression. The agreement between theoretic and experimental results is quite satisfactory in the normal-phase and reversed-phase elution mode.  相似文献   
3.
4.
An appropriate coupled cohesive law for predicting the mixed mode failure is established by combining normal separation and tangential separation of surfaces in the cohesive zone model(CZM) and the cohesive element method.The Xu-Needleman exponential cohesive law with the fully shear failure mechanism is one of the most popular models.Based on the proposed consistently coupled rule/principle,the Xu-Needleman law with the fully shear failure mechanism is proved to be a non-consistently coupled cohesive la...  相似文献   
5.
在粘聚元或者粘聚域模型中,能够预测混合失效模式(mixed mode)的粘聚律是通过关联界面的法向分离和切向分离来建立的.考虑完全剪切失效机制的Xu-Needleman粘聚律是目前文献中应用最多的关联粘聚律之一.基于该文提出的粘聚律一致关联准则,采用界面分离功分析法,证明了考虑剪切失效机制的Xu-Needleman粘聚律在混合失效模式下,属于非一致关联粘聚律.理论分析证明,考虑剪切失效的Xu-Needleman粘聚律仅在界面的法向分离功与切向分离功相等的情况下能够正确刻画混合失效模式.基于粘聚律一致关联准则,在考虑剪切失效的Xu-Needleman粘聚律的基础上,进行修正提出一种一致关联粘聚律(CCC).分析证明,这种修正的一致关联粘聚律克服了原有Xu-Needleman粘聚律非一致关联的弊端,能够更好刻画混合失效模式下的破坏行为.  相似文献   
6.
Counter‐current chromatography (CCC) was investigated as a new sample pretreatment method for the determination of trace polycyclic aromatic hydrocarbons (PAHs) in water environmental samples. The experiment was performed with a non‐aqueous binary two‐phase solvent system composed of n‐heptane and acetonitrile. The CCC column was first filled with the upper stationary phase, and then a large volume of water sample was pumped into the column while the CCC column was rotated at 1600 rpm. Finally, the trace amounts of PAHs extracted and enriched in the stationary phase were eluted out by the lower mobile phase and determined by gas chromatography–flame ionization detector (GC‐FID) or gas chromatography–mass spectrometry (GC‐MS). The enrichment and cleanup of PAHs can be fulfilled online by this method with high recoveries (84.1–103.2%) and good reproducibility (RSDs: 4.9–12.2%) for 16 EPA PAHs under the optimized CCC pretreatment conditions. This method has been successfully applied to determine PAHs in lake water where 8 PAHs were detected in the concentration of 40.9–89.9 ng/L. The present method is extremely suitable for the preparation of large volume of environmental water sample for the determination of trace amounts of organic pollutants including PAHs as studied in this paper.  相似文献   
7.
随着质量改进活动的不断开展,现代制造过程中的不合格项在逐渐降低。在这种情况下,常规的休哈特型计数控制图往往是失效的。为了监控高质量的过程运行,一种方法是采用累计合格品计数(CCC)图;另一种方法是采用几何Q图,本文首先分析了这两种控制图的基本原理;进而以平均链长(ARL)和探测过程发生漂移的概率为准则,系统分析和比较了这两种控制图的性能,仿真结果表明,在大多数情况下,这两种控制图具有相似的性能;最后,通过实例说明了这两种控制图的应用,并给出了若干建议。  相似文献   
8.
Since 1980, high-speed counter-current chromatography (HSCCC) has been used for separation and purification of natural and synthetic products in a standard elution mode. In 1991, a novel elution mode called pH-zone refining CCC was introduced from an incidental discovery that an organic acid in the sample solution formed the sharp peak of an acid analyte. The cause of this sharp peak formation was found to be bromoacetic acid present in the sample solution which formed a sharp trailing border to trap the acidic analyte. Further studies on the separation of DNP-amino acids with three spacer acids in the stationary phase revealed that increased sample size resulted in the formation of fused rectangular peaks, each preserving high purity and zone pH with sharp boundaries. The mechanism of this phenomenon was found to be the formation of a sharp trailing border of an acid (retainer) in the column which moves at a lower rate than that of the mobile phase. In order to facilitate the application of the method, a new method was devised using a set of retainer and eluter to form a sharp retainer rear border which moves through the column at a desired rate regardless of the composition of the two-phase solvent system. This was achieved by adding the retainer in the stationary phase and the eluter in the mobile phase at a given molar ratio. Using this new method the hydrodynamics of pH-zone-refining CCC was diagrammatically illustrated by three acidic samples. In this review paper, typical pH-zone-refining CCC separations were presented, including affinity separations with a ligand and a separation of a racemic mixture using a chiral selector in the stationary phase. Major characteristics of pH-zone-refining CCC over conventional HSCCC are as follows: the sample loading capacity is increased over 10 times; fractions are highly concentrated near saturation level; yield is improved by increasing the sample size; minute charged compounds are concentrated and detected at the peak boundaries; and elution peaks are monitored with a pH flow meter for compounds with no chromophore. Since 1994, over 70 research papers on pH-zone-refining CCC have been published with the trends increasing in the recent years.  相似文献   
9.
c-C_3H_2,HCCH和H_2CCC的电离能用CCSD(T)/CBS方法进行了计算。在计算中还包含了零点振动能校正和芯电子和价电子相关校正,标量相对论效应和高于CCSD(T)理论水平的校正。CCSD(T)/CBS方法计算的c-C_3H_2和HCCH电离能的数值分别为(9.15±0.03)和(8.96±0.04)eV,且与实验值(9.15±0.03)和(8.96±0.04)eV很好一致。CCSD(T)计算的H_2CCC→H_2CCC~ (~2A_1,C_(2v))和H_2CCC→H_2CCC (~2A′,C_s)电离跃迁的电离能分别为10.477和10.388 eV。在考虑Frank-Condon因子基础上,以前单光子电离实验所测定的(10.43±0.02)eV电离能最可能对应于H_2CCC→H_2CCC (~2A_1,C_(2v))跃迁的电离阈值。虽然对c-C_3H_2,HCCH和H_2CCC实验电离能测量的精确性难以达到理论计算精度的±30 meV范围内,所得到的理论电离能值与实验值非常一致,表明CCSD(T)/CBS计算结合高级相关校正对简单的碳氢卡宾和双自由基能得到可靠的电离能预示值。还给出了c-C_3H_2/c-C_3H_2~ ,HCCH/HCCH 和H_2CCC/H_2CCC 在0和298 K的生成热△H_(f0)~o和△H_(f298)~o。发现考虑实验精度不确定性后,它们的实验值与CCSD(T)/CBS预示值非常一致。  相似文献   
10.
Chromatography models, liquid-liquid models and specifically Counter-Current Chromatography (CCC) models are usually either iterative, or provide a final solution for peak elution. This paper describes providing a better model by finding a more elemental solution. A completely new model has been developed based on simulating probabilistic units. This model has been labelled ProMISE (probabilistic model for immiscible phase separations and extractions), and has been realised in the form of a computer application, interactively visualising the behaviour of the units in the CCC process. It does not use compartments or cells like in the Craig based models, nor is it based on diffusion theory. With this new model, all the CCC flow modes can be accurately predicted. The main advantage over the previously developed model, is that it does not require a somewhat arbitrary number of steps or theoretical plates, and instead uses an efficiency factor. Furthermore, since this model is not based on compartments or cells like the Craig model, and is therefore not limited to a compartment or cell nature, it allows for an even greater flexibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号