首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   3篇
  国内免费   18篇
化学   73篇
晶体学   1篇
力学   4篇
物理学   7篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   7篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1990年   2篇
  1977年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
1.
The freezing temperatures and densities (at 31°C) of solutions of octane, nonane, decane, 3,3-diethylpentane, and sodium oleate inN-methylacetamide (NMA) have been measured. The molality of the freezing solution was calculated from the density. The solubilities of octane, nonane, and decane inN-methylacetamide are also reported. Apparent molal volumes calculated from the densities are close to the values in the pure hydrocarbons and are not strong functions of the concentration. This indicates the absence of any unusual packing effect. The calculated free energies of transfer of the hydrocarbons from pure hydrocarbon to NMA solution are much less negative than the corresponding values for water, showing that the bulk solvophobic interaction inN-methylacetamide is smaller than in water. This is consistent with the freezing temperatures of sodium oleate which show that micelles do not form below 0.1 mole-kg–1. The osmotic coefficients of the hydrocarbons calculated from the freezing temperatures showed negative deviations from ideality that were larger for the hydrocarbons with the higher molecular weights. Two estimates of the pairwise solvophobic interaction inN-methylacetamide indicate that it is also smaller than in water. The solvophobic effect in this solvent does not include the large entropy and enthalpy effects found in aqueous solutions.  相似文献   
2.
Utilization of lipases for synthesis of esters of hydrophilic polyols has been investigated. The choice of a suitable solvent is crucial in this type of reaction. An interesting case is fatty acid esters from neopentylpolyols, such as trimethylolpropane, which are of great interest as high temperature lubricants. Enzymatic synthesis of trimethylolpropane tricaprylate was studied as an alternative to chemical manufacturing. Triester production occurred only if the water produced by esterification was continuously removed from the medium. In these condition, kinetics of appearance and transformation of mono-, di- and triesters were determined in order to define optimal conditions.  相似文献   
3.
Using “pure” natural hematite selected from a high silica Nigerian hematitic ore, oleate adsorption densities at the hematite–water interface were determined in the presence of various inorganic ions (anions and cations) of different charges and at varying concentrations. Adsorption density was determined using electrical conductivity measurements. The specific surface area of the hematite particles was determined using the method of adsorption of paranitrophenol in aqueous solution. Inorganic ions in solution depressed oleate adsorption at the aqueous hematite surface. The charge of the ion proved to be the dominant factor determining the depression of oleate adsorption. Ionic strength also was an influence, up to a limiting value at which monolayer oleate coverage of the hematite surface occurred. The inorganic ions in solution are considered to function through nonspecific adsorption in the diffuse region of the electric double layer.  相似文献   
4.
A commercialRhizomucor miehei lipase was purified by ammonium sulfate precipitation. Phenyl Sepharose 6 Fast Row hydrophobic interaction chromatography, and DEAE Sepharose Fast Flow anion-exchange chromatography. The recovery of lipase activity was 32% with a 42-fold purification. The molecular size of the purified enzyme was 31,600 Dalton and the pI 3.8. The enzyme was stable for at least 24 h within a pH range of 7.0-10.0, and 96.8% of the enzyme activity remained when kept at 30‡C for 24 h. Further, about 10–30% of the lipase activity was inhibited by K+, Li+, Ni+, Co2+, Zn2+, Mg2+, Sn2+, Cu2+, Ba2+, Ca2+, and Fe2+ ions and by SDS, but EDTA had no effect. Under the experimental conditions, the optimum temperature for the hydrolysis of olive oil was 50‡C (pH 8.0), and for the synthesis of 1-butyl oleate, 37‡C. It was concluded that hydrolytic activity of lipase alone is not a sufficient criterion for its synthetic potential. The optimal molar ratio of oleic acid and 1-butanol was 2:1 for 1-butyl oleate synthesis. The 1-butyl oleate yield was unaffected by purification of the enzyme after 12 h.  相似文献   
5.
Vesicle formation in a mixture of oleyldimethylamine oxide (OleylDMAO) and sodium oleate (NaOl) was investigated by viscoelastic measurements and cryoscopic transmission electron micrograph (cryo-TEM) observations. The viscoelastic properties changed with increasing mole fraction of NaOl (X NaOl) from the Maxwell behavior of OleylDMAO solutions (X NaOl=0) suggesting a transient network of long flexible chains. For X NaOl=0.2 and 0.4 mixtures, both the shear storage modulus G and the shear loss modulus G showed weak dependences on angular frequency with a relation G>G. From cryo-TEM observations, vesicles coexisted with threadlike micelles in mixtures of X NaOl=0.2 and 0.3. As X NaOl increased further (X NaOl=0.5 and 0.6), threadlike micelles disappeared and the coexistence of vesicles and globular micelles was observed. At X NaOl=0.5, the viscosity decreased remarkably, which was consistent with the disappearance of threadlike micelles. The results indicated that vesicles were formed by the addition of NaOl to OleylDMAO solutions, contrary to the expectation of a decrease of the packing parameter with the introduction of electric charges.  相似文献   
6.
Silver and gold organosols are easily prepared by transferring nanoparticles from aqueous phase into isooctane with high efficiency (>90%). Concentrations of sodium oleate and magnesium chloride have crucial effects on the transfer efficiency. Based on the UV-visible absorption spectra, TEM micrographs of nanoparticles, as well as molecular modeling calculation about the adsorption conformation of sodium oleate molecules, a possible phase transfer mechanism is proposed.  相似文献   
7.
吗啡啉碱性离子液体催化合成油酸甲酯   总被引:3,自引:0,他引:3  
采用两步法合成了由阳离子N-甲基-N-丁基吗啡啉和阴离子氢氧根搭配的[Nbmm]OH新型碱性离子液体。实验利用FT-IR、元素分析和TGA分别对该离子液体的化学结构和热稳定性进行了表征。结果表明,该离子液体的热稳定性超过200℃。对该离子液体的溶解性能进行了考察, 结果表明,该离子液体能与强极性溶剂互溶,而且其水溶液的碱性较强。为了考察该离子液体对酯化反应的催化活性,实验过程中以油酸和甲醇反应生成油酸甲酯的酯化反应为模型反应,评价该离子液体的催化活性。结果表明,当反应温度60℃、酸醇比为1:6、离子液体加入量为原料总质量的15%、反应10 h时,油酸转化率达93.9%,而且该离子液体易于从反应体系中分离,可以循环使用。  相似文献   
8.
Hydroxyapatite (HAP), a well‐known member of the calcium phosphate family, is the major inorganic component of bones and teeth in vertebrates. The highly ordered arrays of HAP structures are of great significance for hard tissue repair and for understanding the formation mechanisms of bones and teeth. However, the synthesis of highly ordered HAP structure arrays remains a great challenge. In this work, inspired by the ordered structure of tooth enamel, we have successfully synthesized three‐dimensional bulk materials with large sizes (millimeter scale) that are made of highly ordered arrays of ultralong HAP microtubes (HOAUHMs) by solvothermal transformation of calcium oleate precursor. The core–shell‐structured oblate sphere consists of a core that is composed of HAP nanorods and a shell that consists of highly ordered HAP microtube arrays. The prepared HOAUHMs are large: 6.0 mm in diameter and up to 1.4 mm in thickness. With increasing solvothermal reaction time, the HOAUHMs grow larger; the microtubes become more uniform and more ordered. This work provides a new synthetic method for synthesizing highly ordered arrays of uniform HAP ultralong microtubes that are promising for biomedical applications.  相似文献   
9.
悬浮聚合法制备磁性分子印迹聚合物微球   总被引:8,自引:1,他引:8  
以苯胺和二甲基苯胺为模板分子、甲基丙烯酸(MAA)为功能单体、三羟甲基丙烷三丙烯酸酯(TRIM)为交联单体、Fe3O4为磁性组分,采用悬浮聚合法制备了磁性分子印迹聚合物微球(MMIPMs)。结果表明,改性Fe3O4微粒在MMIPMs中分散较好,MMIPMs在水性介质中对模板分子的选择吸附性较差,但在有机介质中有较好的选择吸附性。  相似文献   
10.
It is shown that the interfacial attraction between low-energy bodies immersed in aqueous media, known as “hydrophobic” interaction, can be quantitatively accounted for by, mainly, the hydrogen-bonding energy of cohesion of water, plus, to a very minor extent, a van der Waals-Lifshitz attraction between the Immersed law-energy bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号