首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   167篇
  国内免费   57篇
化学   582篇
晶体学   5篇
力学   27篇
综合类   3篇
数学   9篇
物理学   253篇
  2024年   2篇
  2023年   10篇
  2022年   28篇
  2021年   28篇
  2020年   59篇
  2019年   46篇
  2018年   30篇
  2017年   19篇
  2016年   60篇
  2015年   43篇
  2014年   66篇
  2013年   68篇
  2012年   42篇
  2011年   63篇
  2010年   44篇
  2009年   44篇
  2008年   38篇
  2007年   36篇
  2006年   38篇
  2005年   25篇
  2004年   22篇
  2003年   20篇
  2002年   7篇
  2001年   12篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有879条查询结果,搜索用时 187 毫秒
1.
The rate-equation approach is used to describe sequential tunneling through a molecular junction in the Coulomb blockade regime. Such device is composed of molecular quantum dot (with discrete energy levels) coupled with two metallic electrodes via potential barriers. Based on this model, we calculate nonlinear transport characteristics (conductance-voltage and current-voltage dependences) and compare them with the results obtained within a self-consistent field approach. It is shown that the shape of transport characteristics is determined by the combined effect of the electronic structure of molecular quantum dots and by the Coulomb blockade. In particular, the following phenomena are discussed in detail: the suppression of the current at higher voltages, the charging-induced rectification effect, the charging-generated changes of conductance gap and the temperature-induced as well as broadening-generated smoothing of current steps.  相似文献   
2.
3.
The research described in this paper presents a method for chemically modifying the surface of plant photosynthetic membranes in such a way that electrical contact can be made. Colloidal platinum was prepared, precipitated directly onto thylakoid membranes from aqueous solution, and entrapped on fiberglass filter paper. This composition of matter was capable of sustained simultaneous photoevolution of hydrogen and oxygen when irradiated at any wavelength (400–700 nm) in the chlorophyll absorption spectrum. Experimental data support the interpretation that part of the platinum metal catalyst is precipitated adjacent to the photosystem-I reduction site of photosynthesis and that electron transfer occurs across the interface between photosystem I and the catalyst. When contacted with metal electrodes, the thylakoid-platinum combination was capable of generating a sustained flow of current through an external load resistor. Procedures for preparing this material and experimental data on its catalytic and electronic properties are presented. Also presented is an analysis of the flow of photocurrent in terms of the interfacial electron transfer reactions that occur at the interfaces of the components of the assembly.  相似文献   
4.
5.
A relativistic, two-wave generator working near -type oscillations of two lowest modes with frequency band around 8 mm, is investigated experimentally. Obtained output radiation patterns point to a single-frequency radiation character. The efficiency is found to rise in two-wave regimes in comparison with one-wave ones. The generator assembled of two sections is also considered.  相似文献   
6.
Two efficient, physically based models for the real-time simulation of molecular device characteristics of single molecules are developed. These models assume that through-molecule tunnelling creates a steady-state Lorentzian distribution of excess electron density on the molecule and provides for smooth transitions for the electronic degrees of freedom between the tunnelling, molecular-excitation, and charge-hopping transport regimes. They are implemented in the fREEDA™ transient circuit simulator to allow for the full integration of nanoscopic molecular devices in standard packages that simulate entire devices including CMOS circuitry. Methods are presented to estimate the parameters used in the models via either direct experimental measurement or density-functional calculations. The models require 6–8 orders of magnitude less computer time than do full a priori simulations of the properties of molecular components. Consequently, molecular components can be efficiently implemented in circuit simulators. The molecular-component models are tested by comparison with experimental results reported for 1,4-benzenedithiol.  相似文献   
7.
Biphenyl- and fluorenyl-based potential molecular electronic devices   总被引:1,自引:0,他引:1  
New potential molecular electronics devices have been synthesized based on our knowledge of systems that we previously studied. Research has shown that simple molecular systems demonstrate negative differential resistance (NDR) and memory characteristics. The new molecules rely primarily on the redox properties of the compounds to improve upon the solid-state characteristics already observed. Electrochemical tests have been performed in order to evaluate the redox properties with the hope that the electrochemical results can be used as a predictive tool to evaluate the usefulness of those compounds in device configurations.  相似文献   
8.
王磊  刘静 《化学教育》2019,40(20):1-12
镓是第一个根据化学元素周期律预言并在自然界中证实的元素,是室温下电导率和热导率均为最大的液态物质,镓在电子工业中得到了广泛应用,被誉为电子工业“脊梁”。近十几年来,镓的更多应用潜力被发掘出来,在电子工业、散热、增材制造、柔性机器、生物医学等领域均有重要的应用前景。  相似文献   
9.
Molecular and nanoscale materials and devices in electronics   总被引:2,自引:0,他引:2  
Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.  相似文献   
10.
To explore their suitability for applications in molecular optoelectronics and as sensory materials, novel dithieno[3,2-b:2',3'-d]phospholes have been synthesized and their reactivity and properties investigated. An efficient two-step synthesis allowed for a modular assembly of differently functionalized compounds. The dithieno[3,2-b:2',3'-d]phosphole system exhibits extraordinary optoelectronic properties with respect to wavelength, intensity, and tunability. Owing to the nucleophilic nature of the central phosphorus atom, its significant electronic influence on the conjugated pi system can be altered selectively by chemically facile modifications such as oxidation or complexation with Lewis acids or transition metals. All the dithienophosphole species presented show very strong blue photoluminescence with excellent quantum yield efficiencies supporting their potential utility as blue-light emitting components in organic light emitting diodes (OLEDs). Furthermore, depending on the electronic nature of the phosphorus center, the materials exhibit distinctive optoelectronic properties suggesting that the dithieno[3,2-b:2',3'-d]phosphole system may be useful as sensory material. Theoretical calculations, including time-dependent DFT methods, revealed the excellent predictability of the structures and optoelectronic properties of the functionalized dithienophospholes allowing the design of future dithieno[3,2-b:2',3'-d]phosphole-based materials to be "stream-lined". By using tin-functionalized dithienophosphole monomers, a strategy, which involves Stille coupling, towards extended pi-conjugated materials with significantly redshifted optoelectronic properties is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号