首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8287篇
  免费   1091篇
  国内免费   400篇
化学   1359篇
晶体学   40篇
力学   1593篇
综合类   104篇
数学   4173篇
物理学   2509篇
  2024年   10篇
  2023年   78篇
  2022年   201篇
  2021年   253篇
  2020年   314篇
  2019年   242篇
  2018年   260篇
  2017年   276篇
  2016年   354篇
  2015年   217篇
  2014年   383篇
  2013年   816篇
  2012年   434篇
  2011年   452篇
  2010年   400篇
  2009年   439篇
  2008年   381篇
  2007年   398篇
  2006年   398篇
  2005年   380篇
  2004年   299篇
  2003年   308篇
  2002年   245篇
  2001年   237篇
  2000年   268篇
  1999年   193篇
  1998年   193篇
  1997年   180篇
  1996年   125篇
  1995年   130篇
  1994年   115篇
  1993年   101篇
  1992年   98篇
  1991年   73篇
  1990年   70篇
  1989年   53篇
  1988年   48篇
  1987年   36篇
  1986年   33篇
  1985年   55篇
  1984年   42篇
  1983年   20篇
  1982年   30篇
  1981年   19篇
  1980年   16篇
  1979年   20篇
  1978年   15篇
  1977年   19篇
  1976年   12篇
  1971年   7篇
排序方式: 共有9778条查询结果,搜索用时 421 毫秒
1.
2.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   
3.
Weijin Li 《中国物理 B》2022,31(8):80503-080503
Aiming at training the feed-forward threshold neural network consisting of nondifferentiable activation functions, the approach of noise injection forms a stochastic resonance based threshold network that can be optimized by various gradient-based optimizers. The introduction of injected noise extends the noise level into the parameter space of the designed threshold network, but leads to a highly non-convex optimization landscape of the loss function. Thus, the hyperparameter on-line learning procedure with respective to network weights and noise levels becomes of challenge. It is shown that the Adam optimizer, as an adaptive variant of stochastic gradient descent, manifests its superior learning ability in training the stochastic resonance based threshold network effectively. Experimental results demonstrate the significant improvement of performance of the designed threshold network trained by the Adam optimizer for function approximation and image classification.  相似文献   
4.
5.
6.
High-energy assisted extraction techniques, like ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), are widely applied over the last years for the recovery of bioactive compounds such as carotenoids, antioxidants and phenols from foods, animals and herbal natural sources. Especially for the case of xanthophylls, the main carotenoid group of crustaceans, they can be extracted in a rapid and quantitative way with the use of UAE and MAE.  相似文献   
7.
Abstract

Realistic stochastic modeling is increasingly requiring the use of bounded noises. In this work, properties and relationships of commonly employed bounded stochastic processes are investigated within a solid mathematical ground. Four families are object of investigation: the Sine-Wiener (SW), the Doering–Cai–Lin (DCL), the Tsallis–Stariolo–Borland (TSB), and the Kessler–Sørensen (KS) families. We address mathematical questions on existence and uniqueness of the processes defined through Stochastic Differential Equations, which often conceal non-obvious behavior, and we explore the behavior of the solutions near the boundaries of the state space. The expression of the time-dependent probability density of the Sine-Wiener noise is provided in closed form, and a close connection with the Doering–Cai–Lin noise is shown. Further relationships among the different families are explored, pathwise and in distribution. Finally, we illustrate an analogy between the Kessler–Sørensen family and Bessel processes, which allows to relate the respective local times at the boundaries.  相似文献   
8.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   
9.
It is believed that there are more fundamental gauge symmetries beyond those described by the Standard Model of particle physics. The scales of these new gauge symmetries are usually too high to be reachable by particle colliders. Considering that the phase transition (PT) relating to the spontaneous breaking of new gauge symmetries to the electroweak symmetry might be strongly first order, we propose considering the stochastic gravitational waves (GW) arising from this phase transition as an indirect way of detecting these new fundamental gauge symmetries. As an illustration, we explore the possibility of detecting the stochastic GW generated from the PT of \begin{document}$ {\bf{B}}-{\bf{L}}$\end{document} in the space-based interferometer detectors. Our study demonstrates that the GW energy spectrum is reachable by the LISA, Tianqin, Taiji, BBO, and DECIGO experiments only for the case where the spontaneous breaking of \begin{document}$ {\bf{B}}-{\bf{L}}$\end{document} is triggered by at least two electroweak singlet scalars.  相似文献   
10.
A general theory of operators on Boson Fock space is discussed in terms of the white noise distribution theory on Gaussian space (white noise calculus). An integral kernel operator is generalized from two aspects: (i) The use of an operator-valued distribution as an integral kernel leads us to the Fubini type theorem which allows an iterated integration in an integral kernel operator. As an application a white noise approach to quantum stochastic integrals is discussed and a quantum Hitsuda–Skorokhod integral is introduced. (ii) The use of pointwise derivatives of annihilation and creation operators assures the partial integration in an integral kernel operator. In particular, the particle flux density becomes a distribution with values in continuous operators on white noise functions and yields a representation of a Lie algebra of vector fields by means of such operators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号