首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   1篇
化学   4篇
晶体学   1篇
力学   15篇
数学   1篇
物理学   3篇
  2022年   2篇
  2021年   2篇
  2016年   2篇
  2013年   1篇
  2011年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2000年   1篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有24条查询结果,搜索用时 38 毫秒
1.
In the light of a new interpretation, we have studied the end effects for highly elastic-constant viscosity fluids commonly called Boger fluids. In terms of entrance effect only, the presence of primary normal-stress differences in absence of shear-thinning properties results in a decrease of the entrance correction below the Couette (Newtonian) value, whereas the total end correction can be substantially increased by an amount which is strongly dependent on the Weissenberg number or recoverable shear.  相似文献   
2.
Linear and nonlinear viscoelastic properties were examined for a 50 wt% suspension of spherical silica particles (with radius of 40 nm) in a viscous medium, 2.27/1 (wt/wt) ethylene glycol/glycerol mixture. The effective volume fraction of the particles evaluated from zero-shear viscosities of the suspension and medium was 0.53. At a quiescent state the particles had a liquid-like, isotropic spatial distribution in the medium. Dynamic moduli G* obtained for small oscillatory strain (in the linear viscoelastic regime) exhibited a relaxation process that reflected the equilibrium Brownian motion of those particles. In the stress relaxation experiments, the linear relaxation modulus G(t) was obtained for small step strain (0.2) while the nonlinear relaxation modulus G(t, ) characterizing strong stress damping behavior was obtained for large (>0.2). G(t, ) obeyed the time-strain separability at long time scales, and the damping function h() (–G(t, )/G(t)) was determined. Steady flow measurements revealed shear-thinning of the steady state viscosity () for small shear rates (< –1; = linear viscoelastic relaxation time) and shear-thickening for larger (>–1). Corresponding changes were observed also for the viscosity growth and decay functions on start up and cessation of flow, + (t, ) and (t, ). In the shear-thinning regime, the and dependence of +(t,) and (t,) as well as the dependence of () were well described by a BKZ-type constitutive equation using the G(t) and h() data. On the other hand, this equation completely failed in describing the behavior in the shear-thickening regime. These applicabilities of the BKZ equation were utilized to discuss the shearthinning and shear-thickening mechanisms in relation to shear effects on the structure (spatial distribution) and motion of the suspended particles.Dedicated to the memory of Prof. Dale S. Parson  相似文献   
3.
In this experimental work, we investigate the influence of an organic counterion, sodium tosylate, on the rheological properties of an aqueous solution of CTAB at the concentration of 0.05M. With this system we can clearly see shear thickening for small salt concentrations C s and only shear thinning behavior at higher C s characterized by a linear evolution of η=f(γ) in a log-log representation. In these evolutions it is only in a very small domain of concentrations of the salt (near C s =0.035M) that we can observe a nearly constant plateau of the shear stress against shear rate. The values of σ0 (characterizing the stress plateau), G 0 (the plateau modulus) and τR (the relaxation time) obtained by dynamical rheological measurements, allow to compare experimental results obtained to predicted values of the theory of Cates corresponding to the occurrence of shear induced banding structures. Received: 22 July 1997 Accepted: 3 February 1998  相似文献   
4.
5.
Summary: The dynamics and the non-linear rheology of concentrated dispersions of soft particles are shown to exhibit generic properties. They display both solid-like and liquid-like properties depending on the applied stress. Below the yield point, dispersions exhibit history-dependent phenomena that have all the hallmarks of ageing in glasses. The close-packed disordered structures of the dispersions lie at the heart of this behaviour. Other properties such as the propensity of pastes to slip on solid surfaces appear to be governed by specific contact interactions between the squeezed particles.  相似文献   
6.
The drag coefficient for bubbles with mobile or immobile interface rising in shear-thinning elastic fluids described by an Ellis or a Carreau model is discussed. Approximate solutions based on linearization of the equations of motion are presented for the highly elastic region of flow. These solutions are in reasonably good agreement with the theoretical predictions based on variational principles and with published experimental data. C D Drag coefficient - E * Differential operator [E * 2 = 2/2 + (sin/ 2)/(1/sin /)] - El Ellis number - F D Drag force - K Consistency index in the power-law model for non-Newtonian fluid - n Flow behaviour index in the Carreau and power-law models - P Dimensionless pressure [=(p – p 0)/0 (U /R)] - p Pressure - R Bubble radius - Re 0 Reynolds number [= 2R U /0] - Re Reynolds number defined for the power-law fluid [= (2R) n U 2–n /K] - r Spherical coordinate - t Time - U Terminal velocity of a bubble - u Velocity - Wi Weissenberg number - Ellis model parameter - Rate of deformation - Apparent viscosity - 0 Zero shear rate viscosity - Infinite shear rate viscosity - Spherical coordinate - Parameter in the Carreau model - * Dimensionless time [=/(U /R)] - Dimensionless length [=r/R] - Second invariant of rate of deformation tensors - * Dimensionless second invariant of rate of deformation tensors [=/(U /R)2] - Second invariant of stress tensors - * Dimensionless second invariant of second invariant of stress tensor [= / 0 2 (U /R)2] - Fluid density - Shear stress - * Dimensionless shear stress [=/ 0 (U /R)] - 1/2 Ellis model parameter - 1 2/* Dimensionless Ellis model parameter [= 1/2/ 0(U /R)] - Stream function - * Dimensionless stream function [=/U R 2]  相似文献   
7.
Water-soluble cellulose ethers are widely used as stabilizers, thickeners, and viscosity modifiers in many industries. Understanding rheological behavior of the polymers is of great significance to the effective control of their applications. In this work, a series of cyanoethylcellulose (CEC) samples with different molecular weights were prepared with cellulose and acrylonitrile in NaOH/urea aqueous solution under the homogeneous reaction. The rheological properties of water-soluble CECs as a function of concentration and molecular weight were investigated using shear viscosity and dynamic rheological measurements. Viscoelastic behaviors have been successfully described by the Carreau model, the Ostwald-de-Waele equation, and the Cox–Merz rule. The entanglement concentrations were determined to be 0.6, 0.85, and 1.5 wt% for CEC-11, CEC-7, and CEC-3, respectively. All of the solutions exhibited viscous behavior rather than a clear sol-gel transition in all tested concentrations. The heterogeneous nature of CEC in an aqueous solution was determined from the Cox–Merz rule due to the coexistence of single chain complexes and aggregates. In addition, the CEC aqueous solutions showed good thermal and time stability, and the transition with temperature was reversible.  相似文献   
8.
Quasi-zero-stiffness(QZS) vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration. However, traditional QZS(T-QZS)vibration isolators usually adopt linear damping, owing to which achieving good isolation performance at both low and high frequencies is difficult. T-QZS isolators exhibit hardening stiffness characteristics, and their vibration isolation performance is e...  相似文献   
9.
10.
A modified constitutive equation for a second grade fluid is proposed so that the model would be suitable for studies where shear-thinning (or shear-thickening) may occur. In addition, the dependence of viscosity on the temperature follows the Reynolds equation. In this paper, we propose a constitutive relation, (18), which has the basic structure of a second grade fluid, where the viscosity is now a function of temperature, shear rate, and concentration. As a special case, we solve the fully developed flow of a non-Newtonian fluid given by (11), where the effects of concentration are neglected.Received: 28 August 2003, Accepted: 3 March 2004, Published online: 25 June 2004 Correspondence to: M. Massoudi Dedicated to Professor Brian Straughan  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号