首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
力学   3篇
数学   4篇
物理学   3篇
  2020年   1篇
  2019年   1篇
  2011年   2篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The flux-form incremental remapping transport scheme introduced by Dukowicz and Baumgardner [1] converts the transport problem into a remapping problem. This involves identifying overlap areas between quadrilateral flux-areas and regular square grid cells which is non-trivial and leads to some algorithm complexity. In the simpler swept area approach (originally introduced by Hirt et al. [2]) the search for overlap areas is eliminated even if the flux-areas overlap several regular grid cells. The resulting simplified scheme leads to a much simpler and robust algorithm.  相似文献   
2.
齐进  田保林  王双虎 《力学学报》2011,43(4):660-664,672,671
针对守恒形式的欧拉方程组, 构造了一种结合Roe格式的守恒型有限体 积形式的半拉氏方法. 通过发展一种基于Roe特征速度的拉氏质点回溯方法, 由此来计算 半点的流量并作为边界通量的近似, 使得这种半拉氏方法在时空离散上达到二阶精度, 并 且保证了守恒性. 其中回溯点处物理量采用本质无振荡格式(ENO)方法进行插值重 构得到, 不需要增加人工黏性且避免了有限体积多矩半拉氏方法中限制器选择的问题, 又能够达到时空的高阶精度. 方法简便, 易于实现, 兼具拉氏方法和欧拉方法的优点. 一维和二维数值算例表明, 此方法对激波和接触间断都取得了满意的模拟效果, 可用于可压缩复杂流动问题的计算.  相似文献   
3.
This paper describes a technique for achieving accurate numerical simulations of advective transport at large Courant numbers using large time steps. The scheme is called ULTIMATE DISCUS and it implements Leonard's universal flux limiter and QUICKEST algorithms within a semi- Lagrangian treatment of advection. This enables the scheme to achieve monotonic solutions, mass conservation and, most importantly, high accuracy without any limit on the time step (or Courant number). The results of numerical experiments of advection over a fixed distance show that the accuracy of the method increases with increasing spatial resolution and generally increases (but in a non-trivial manner) with increasing Courant number. Accuracy is exact at all integer values of Courant number; for Courant numbers increasing between zero and one, accuracy improves rapidly and monotonically; for other integer–integer ranges of Courant number there is a minimum of accuracy close to the mid-range value. This behaviour is explained in terms of the known accuracy of the QUICKSET algorithm as a function of Courant number and the reducing number of interpolative steps required in the simulations as the Courant number increases. The use of the flux limiter is shown to remove non-physical oscillations from the solution, but at the price of a few per cent reduction in global accuracy caused by increased suppression of peak values. © 1997 by John Wiley & Sons, Ltd.  相似文献   
4.
In this paper, we present a new type of semi-Lagrangian scheme for advection transportation equation. The interpolation function is based on a cubic polynomial and is constructed under the constraints of conservation of cell-integrated average and the slope modification. The cell-integrated average is defined via the spatial integration of the interpolation function over a single grid cell and is advanced using a flux form. Nonoscillatory interpolation is constructed by choosing proper approximation to the cell-center values of the first derivative of the interpolation function, which appears to be a free parameter in the present formulation. The resulting scheme is exactly conservative regarding the cell average of the advected quantity and does not produce any spurious oscillation. Oscillationless solutions to linear transportation problems were obtained. Incorporated with an entropy-enforcing numerical flux, the presented schemes can accurately compute shocks and sonic rarefaction waves when applied to nonlinear problems.  相似文献   
5.
The efficient time integration of the dynamic core equations for numerical weather prediction (NWP) remains a key challenge. One of the most popular methods is currently provided by implementations of the semi-implicit semi-Lagrangian (SISL) method, originally proposed by Robert (J. Meteorol. Soc. Jpn., 1982). Practical implementations of the SISL method are, however, not without certain shortcomings with regard to accuracy, conservation properties and stability. Based on recent work by Gottwald, Frank and Reich (LNCSE, Springer, 2002), Frank, Reich, Staniforth, White and Wood (Atm. Sci. Lett., 2005) and Wood, Staniforth and Reich (Atm. Sci. Lett., 2006) we propose an alternative semi-Lagrangian implementation based on a set of regularized equations and the popular Störmer–Verlet time stepping method in the context of the shallow-water equations (SWEs). Ultimately, the goal is to develop practical implementations for the 3D Euler equations that overcome some or all shortcomings of current SISL implementations.  相似文献   
6.
刘全  倪国喜  牛霄  胡军 《计算物理》2020,37(1):19-25
利用三阶迎风插值多项式结合限制子方法,构造Vlasov-Poisson方程的半拉格朗日守恒型格式,可保持Vlasov-Poisson方程解的正性.计算朗道阻尼,双束不稳定性等典型问题,并与样条插值方法、UGKS方法进行比较,模拟结果表明半拉格朗日守恒性格式在Vlasov-Poisson方程求解中具有较高分辨率.  相似文献   
7.
In this paper, a local radial basis function–based semi-Lagrangian lattice Boltzmann method (RBF-SL-LBM) is proposed. This is a mesh-free method that can be used for the simulation of incompressible flows. In this method, the collision step is performed locally, which is the same as in the standard LBM. In the meanwhile, the steaming step is solved in a semi-Lagrangian framework. The distribution functions at the departure points, which may be not the grid points in general, are computed by the local radial basis function interpolation. Several numerical tests are conducted to validate the present method, including the lid-driven cavity flow, the steady and unsteady flow past a circular cylinder, and the flow past an NACA0012 airfoil. The present results are in good agreement with those published in the previous literature, which demonstrates the capability of RBF-SL-LBM for the simulation of incompressible flows.  相似文献   
8.
Semi-Lagrangian schemes have been explored by several authors recently for transport problems, in particular for moving interfaces using the level set method. We incorporate the backward error compensation method developed in our paper from 2003 into semi-Lagrangian schemes with almost the same simplicity and three times the complexity of a first order semi-Lagrangian scheme but with improved order of accuracy. Stability and accuracy results are proved for a constant coefficient linear hyperbolic equation. We apply this technique to the level set method for interface computation.

  相似文献   

9.
Finite Volume Methods for Multi-Symplectic PDES   总被引:2,自引:0,他引:2  
We investigate the application of a cell-vertex finite volume discretization to multi-symplectic PDEs. The investigated discretization reduces to the Preissman box scheme when used on a rectangular grid. Concerning arbitrary quadrilateral grids, we show that only methods with parallelogram-like finite volume cells lead to a multi-symplectic discretization; i.e., to a method that preserves a discrete conservation law of symplecticity. One of the advantages of finite volume methods is that they can be easily adjusted to variable meshes. But, although the implementation of moving mesh finite volume methods for multi-symplectic PDEs is rather straightforward, the restriction to parallelogram-like cells implies that only meshes moving with a constant speed are multi-symplectic. To overcome this restriction, we suggest the implementation of reversible moving mesh methods based on a semi-Lagrangian approach. Numerical experiments are presented for a one dimensional dispersive shallow-water system.  相似文献   
10.
We present an a posteriori estimate for a first order semi-Lagrangian method for Hamilton–Jacobi equations. The result requires piecewise C 1,1 regularity of the viscosity solution and is stated for the Bellman equation related to the infinite horizon problem, although it can be applied to more general Hamilton–Jacobi equations with convex Hamiltonians. This estimate suggests different numerical indicators that can be used to construct an adaptive algorithm for the approximation of the viscosity solution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号