首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   0篇
  国内免费   1篇
化学   2篇
力学   177篇
数学   3篇
物理学   6篇
  2019年   2篇
  2016年   2篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   26篇
  2005年   56篇
  2004年   22篇
  2003年   31篇
  2002年   36篇
排序方式: 共有188条查询结果,搜索用时 31 毫秒
1.
The steady-state two-phase flow non-linear equation is considered in the case when one of phases has low effective permeability in some periodic set, while on the complementary set it is high; the second phase has no contrast of permeabilities in different zones. A homogenization procedure gives the homogenized model with macroscopic effective permeability of the second phase depending on the gradient and on the second order derivatives of the macroscopic pressure of the first phase. This effect cannot be obtained by classical (one small parameter) homogenization. To cite this article: G.P. Panasenko, G. Virnovsky, C. R. Mecanique 331 (2003).  相似文献   
2.
In this Note we investigate the mathematical properties of the volume penalization method applied to the one-dimensional wave equation. Generally speaking, the penalization method allows one to handle complex geometries by simply adding a term to the equation to impose the boundary conditions. We study the convergence of the method with regards to the penalization parameter and we present error and stability analyses for the wave equation. Numerical simulations using a finite difference scheme illustrate the results. To cite this article: A. Paccou et al., C. R. Mecanique 333 (2005).  相似文献   
3.
4.
The purpose of this Note is to propose new diffusive capillary models of Korteweg type and discuss their mathematical properties. More precisely, we introduce viscous models which provide some additional information on the behavior of the density close to vacuum. We actually prove that if some compatibility conditions between diffusion and capillarity are satisfied, some extra regularity information on a quantity involving the density is available. We obtain a non-trivial equality deduced from the special structure of the momentum equation. This Note generalizes to some extent the authors' previous works on the Korteweg model (with constant capillary coefficient) and on the shallow water equation. To cite this article: D. Bresch, B. Desjardins, C. R. Mecanique 332 (2004).  相似文献   
5.
This study is in keeping with the general pattern of dynamical simulations of a set of rigid three-dimensional bodies submitted to unilateral contact constraints with dry friction. An exact formulation (respecting the contact and friction laws) of the problem of predicting the system accelerations and the contact status, in further evolution is proposed. A numerical treatment of this kind of nonlinear problem is presented. This approach is applied to a simple multi-contact example, and yields results in agreement with those of analytical and numerical type, known for this example. To cite this article: C. Le Saux et al., C. R. Mecanique 331 (2003).  相似文献   
6.
We present low complexity models for the transport of passive scalars for environmental applications. The model uses partial observations assimilation. Similitude solutions are proposed in a non symmetric metric based on travel times. The approach does not require the solution of any PDE and is mesh free. Also, the solution can be computed in one point only without computing the whole solution. To cite this article: B. Mohammadi, J.-M. Brun, C. R. Mecanique 334 (2006).  相似文献   
7.
The numerical result provided by an approximation method is affected by a global error, which consists of both a truncation error and a round-off error. Let us consider the converging sequence generated by successively dividing by two the step size used. If computations are performed until, in the convergence zone, the difference between two successive approximations is only due to round-off errors, then the global error on the result obtained is minimal. Furthermore its significant bits which are not affected by round-off errors are in common with the exact result, up to one. To cite this article: F. Jézéquel, C. R. Mecanique 334 (2006).  相似文献   
8.
The convective instability of a horizontal liquid layer confined in an annular Hele–Shaw cell subject to a constant rotation and submitted to a centrifugal gradient of temperature is investigated. Using a linear stability analysis, we study the effects of both Coriolis forces and curvature aspect on the stationary convective threshold when the Prandtl number is of the order of unity or larger than unity. We show that the Coriolis forces have a stabilizing effect, and the wave number is independent of these forces. However, a multicellular regime in the radial direction is observed for small Ekman numbers. The results related to the influence of the curvature are also shown. To cite this article: S. Ramezani et al., C. R. Mecanique 330 (2002) 633–640.  相似文献   
9.
In this Note, we present direct numerical simulation results of a spatial mixing layer generated behind an upstream plate separating two boundary layers. The effect of the shape of the trailing edge of the plate is considered through comparisons between flows obtained from a bevelled or a blunt plate. In the former case, a spatial mixing layer consistent with previous experimental and numerical observations is obtained. In the latter case, the self-excited state that establishes in the near wake region dominates primary and secondary instability mechanisms while understating the importance of inflow perturbations. This behaviour is interpreted in terms of convective or absolute instability. The effects on turbulent statistics are also discussed. To cite this article: S. Laizet, E. Lamballais, C. R. Mecanique 334 (2006).  相似文献   
10.
We investigate the behavior of fluid–particle mixtures subject to shear stress, by mean of direct simulation. This approach is meant to give some hints to explain the influence of interacting red cells on the global behavior of the blood. We concentrate on the apparent viscosity, which we define as a macroscopic quantity which characterizes the resistance of a mixture against externally imposed shear motion. Our main purpose is to explain the non-monotonous variations of this apparent viscosity when a mixture of fluid and interacting particles is submitted to shear stress during a certain time interval. Our analysis of these variations is based on preliminary theoretical remarks, and some computations for some well-chosen static configurations. To cite this article: A. Lefebvre, B. Maury, C. R. Mecanique 333 (2005).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号