首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18966篇
  免费   3478篇
  国内免费   2321篇
化学   19615篇
晶体学   197篇
力学   322篇
综合类   93篇
数学   287篇
物理学   4251篇
  2024年   45篇
  2023年   169篇
  2022年   551篇
  2021年   769篇
  2020年   838篇
  2019年   709篇
  2018年   557篇
  2017年   645篇
  2016年   908篇
  2015年   1091篇
  2014年   1171篇
  2013年   1820篇
  2012年   1348篇
  2011年   1231篇
  2010年   1108篇
  2009年   1170篇
  2008年   1237篇
  2007年   1216篇
  2006年   1096篇
  2005年   1015篇
  2004年   983篇
  2003年   919篇
  2002年   606篇
  2001年   519篇
  2000年   513篇
  1999年   450篇
  1998年   385篇
  1997年   289篇
  1996年   241篇
  1995年   232篇
  1994年   198篇
  1993年   120篇
  1992年   126篇
  1991年   66篇
  1990年   51篇
  1989年   63篇
  1988年   45篇
  1987年   36篇
  1986年   35篇
  1985年   41篇
  1984年   25篇
  1983年   9篇
  1982年   14篇
  1981年   22篇
  1980年   22篇
  1979年   13篇
  1978年   11篇
  1977年   9篇
  1976年   6篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
2.
Multidrug resistance of bacteria is a worrying concern in the therapeutic field and an alternative method to combat it is designing new efflux pump inhibitors (EPIs). This article presents a molecular study of two quinazoline derivatives, labelled BG1189 and BG1190, proposed as EPIs. In silico approach investigates the pharmacodynamic and pharmacokinetic profile of BG1189 and BG1190 quinazolines. Molecular docking and predicted ADMET features suggest that BG1189 and BG1190 may represent attractive candidates as antimicrobial drugs. UV-Vis absorption spectroscopy was employed to study the time stability of quinazoline solutions in water or in dimethyl sulfoxide (DMSO), in constant environmental conditions, and to determine the influence of usual storage temperature, normal room lighting and laser radiation (photostability) on samples stability. The effects of irradiation on BG1189 and BG1190 molecules were also assessed through Fourier-transform infrared (FTIR) spectroscopy. FTIR spectra showed that laser radiation breaks some chemical bonds affecting the substituents and the quinazoline radical of the compounds.  相似文献   
3.
4.
The biodegradability of phtalic acid esters in marine and freshwater environments was characterized by their binding free energy with corresponding degrading enzymes. According to comprehensive biodegradation effects weights, the binding free energy values were converted into dimensionless efficacy coefficient using ratio normalization method. Then, considering comprehensive dual biodegradation effects value and the structural parameters of PAEs in both marine and freshwater environments, a 3D-QSAR pharmacophore model was constructed, five PAE derivatives (DBP−COOH, DBP−CHO, DBP−OH, DINP−NH2, and DINP−NO2) were screened out based on their environmental friendliness, functionality and stability. The prediction of biodegradation effects on five PAE derivatives by biodegradation models in marine and freshwater environment increased by 15.90 %, 15.84 %, 27.21 %, 12.33 %, and 8.32 %, and 21.57 %, 15.21 %, 20.99 %, 15.10 %, and 9.74 %, respectively. By simulating the photodegradation path of the PAE derivative molecular, it was found that DBP−OH can generate .OH and provides free radicals for the photodegradation of microplastics in the environment.  相似文献   
5.
We have synthesized a series of triarylamine‐cored molecules equipped with an adjacent amide moiety and dendritic peripheral tails in a variety of modes. We show by 1H NMR and UV/Vis spectroscopy that their supramolecular self‐assembly can be promoted in solution upon light stimulation and radical initiation. In addition, we have probed their molecular arrangements and mesomorphic properties in the bulk by integrated studies on their film state by using differential scanning calorimetry (DSC), variable‐temperature polarizing optical microscopy (VT‐POM), variable‐temperature X‐ray diffraction (VT‐XRD), and atomic force microscopy (AFM). Differences in the number and the disposition of the peripheral tails significantly affect their mesomorphic properties associated with their lamellar‐ or columnar‐packed nanostructures, which are based on segregated stacks of the triphenylamine cores and the lipophilic/lipophobic periphery. Such structural tuning is of interest for implementation of these soft self‐assemblies as electroactive materials from solution to mesophases.  相似文献   
6.
Self‐assembly of AB2 and AB3 type low molecular weight poly(aryl ether) dendrons that contain hydrazide units were used to investigate mechanistic aspects of helical structure formation during self‐assembly. The results suggest that there are three important aspects that control helical structure formation in such systems with acyl hydrazide/hydrazone linkage: i) J‐type aggregation, ii) the hydrogen‐bond donor/acceptor ability of the solvent, and iii) the dielectric constant of the solvent. The monomer units self‐assemble to form dimer structures through hydrogen‐bonding and further assembly of the hydrogen‐bonded dimers leads to macroscopic chirality in the present case. Dimer formation was confirmed by NMR spectroscopy and by mass spectrometry. The self‐assembly in the system was driven by hydrogen‐bonding and π–π stacking interactions. The morphology of the aggregates formed was examined by scanning electron microscopy, and the analysis suggests that aprotic solvent systems facilitate helical fibre formation, whereas introduction of protic solvents results in the formation of flat ribbons. This detailed mechanistic study suggests that the self‐assembly follows a nucleation–elongation model to form helical structures, rather than the isodesmic model.  相似文献   
7.
The current study attempted, for the first time, to qualitatively and quantitatively determine the phytochemical components of Elatostema papillosum methanol extract and their biological activities. The present study represents an effort to correlate our previously reported biological activities with a computational study, including molecular docking, and ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analyses, to identify the phytochemicals that are potentially responsible for the antioxidant, antidepressant, anxiolytic, analgesic, and anti-inflammatory activities of this plant. In the gas chromatography-mass spectroscopy analysis, a total of 24 compounds were identified, seven of which were documented as being bioactive based on their binding affinities. These seven were subjected to molecular docking studies that were correlated with the pharmacological outcomes. Additionally, the ADME/T properties of these compounds were evaluated to determine their drug-like properties and toxicity levels. The seven selected, isolated compounds displayed favorable binding affinities to potassium channels, human serotonin receptor, cyclooxygenase-1 (COX-1), COX-2, nuclear factor (NF)-κB, and human peroxiredoxin 5 receptor proteins. Phytol acetate, and terpene compounds identified in E. papillosum displayed strong predictive binding affinities towards the human serotonin receptor. Furthermore, 3-trifluoroacetoxypentadecane showed a significant binding affinity for the KcsA potassium channel. Eicosanal showed the highest predicted binding affinity towards the human peroxiredoxin 5 receptor. All of these findings support the observed in vivo antidepressant and anxiolytic effects and the in vitro antioxidant effects observed for this extract. The identified compounds from E. papillosum showed the lowest binding affinities towards COX-1, COX-2, and NF-κB receptors, which indicated the inconsequential impacts of this extract against the activities of these three proteins. Overall, E. papillosum appears to be bioactive and could represent a potential source for the development of alternative medicines; however, further analytical experiments remain necessary.  相似文献   
8.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   
9.
The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave-assisted reaction of citric acid and ethylenediamine was investigated by 13C, 13C{1H}, 1H─13C, 13C{14N}, and 15N solid-state nuclear magnetic resonance (NMR) experiments. 13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases. 15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved 13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2 at 155 ppm, and two distinctive 15N NMR resonances near 80 and 160 ppm proved the presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross-peaks in a 1H─13C HETCOR spectrum with brief 1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative 13C and 15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in 13C chemical-shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.  相似文献   
10.
A combined experimental and computational approach was used to distinguish between different polymorphs of the pharmaceutical drug aspirin. This method involves the use of ab initio random structure searching (AIRSS), a density functional theory (DFT)-based crystal structure prediction method for the high-accuracy prediction of polymorphic structures, with DFT calculations of nuclear magnetic resonance (NMR) parameters and solid-state NMR experiments at natural abundance. AIRSS was used to predict the crystal structures of form-I and form-II of aspirin. The root-mean-square deviation between experimental and calculated 1H chemical shifts was used to identify form-I as the polymorph present in the experimental sample, the selection being successful despite the large similarities between the molecular environments in the crystals of the two polymorphs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号