首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   178篇
  国内免费   173篇
化学   795篇
晶体学   20篇
力学   342篇
综合类   6篇
数学   53篇
物理学   369篇
  2024年   4篇
  2023年   10篇
  2022年   38篇
  2021年   50篇
  2020年   72篇
  2019年   42篇
  2018年   72篇
  2017年   53篇
  2016年   65篇
  2015年   41篇
  2014年   55篇
  2013年   170篇
  2012年   50篇
  2011年   52篇
  2010年   46篇
  2009年   55篇
  2008年   53篇
  2007年   63篇
  2006年   43篇
  2005年   48篇
  2004年   61篇
  2003年   45篇
  2002年   53篇
  2001年   39篇
  2000年   41篇
  1999年   37篇
  1998年   33篇
  1997年   34篇
  1996年   27篇
  1995年   27篇
  1994年   25篇
  1993年   15篇
  1992年   20篇
  1991年   9篇
  1990年   5篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   9篇
  1984年   4篇
  1982年   1篇
  1973年   1篇
排序方式: 共有1585条查询结果,搜索用时 78 毫秒
1.
The contribution of rheological properties and viscoelasticity of the interfacial adsorbed layer to the emulsification mechanism of enzymatic modified sugar beet pectin (SBP) was studied. The component content of each enzymatic modified pectin was lower than that of untreated SBP. Protein and ferulic acid decreased from 5.52% and 1.08% to 0.54% and 0.13%, respectively, resulting in a decrease in thermal stability, apparent viscosity, and molecular weight (Mw). The dynamic interfacial rheological properties showed that the interfacial pressure and modulus (E) decreased significantly with the decrease of functional groups (especially proteins), which also led to the bimodal distribution of particle size. These results indicated that the superior emulsification property of SBP is mainly determined by proteins, followed by ferulic acid, and the existence of other functional groups also promotes the emulsification property of SBP.  相似文献   
2.
Four kinds of red phosphorescent organic light-emitting devices were fabricated and compared to investigate the effect of interfacial layers for hole transport and electron injection. 1 nm-thick LiF in the device A and C and 1 nm-thick Cs2CO3 in the device B and D were deposited as an electron injection layer between the anode and the electron transport layer, and 5 nm-thick layer of dipyrazion[2,3-f:2′,2′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile[HATCN] was inserted as a hole transport interfacial layer between the hole injection layer and the hole transport layer only in the device C and D. Under a luminance of 1000 cd/m2, the power efficiencies were 7.6 lm/W and 8.5 lm/W in the device A and B, and 8.6 lm/W and 13.4 lm/W in the device C and D. The quantum efficiency of the device D was 15.8% under 1000 cd/m2 which was somewhat lower than those of the device A and C, but a little higher than that of the device B. The luminance of the device D was much higher than those of the other devices at a given votage. The luminance of the device D at 7 V was 23,710 cd/m2, which was 13.0, 3.4, and 4.0 times higher than those of the device A, B, and C at the same voltage, respectively.  相似文献   
3.
陈小刚  宋金宝 《中国物理》2006,15(4):756-766
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.  相似文献   
4.
The spin-1 Ising model, which is equivalent to the three-component lattice gas model, is used to study wetting transitions in three-component surfactant systems consisting of an oil, water, and a nonionic surfactant. Phase equilibria, interfacial profiles, and interfacial tensions for three-phase equilibrium are determined in mean field approximation, for a wide range of temperature and interaction parameters. Surfactant interaction parameters are found to strongly influence interfacial tensions, reducing them in some cases to ultralow values. Interfacial tensions are used to determine whether the middle phase, rich in surfactant, wets or does not wet the interface between the oil-rich and water-rich phases. By varying temperature and interaction parameters, a wetting transition is located and found to be of the first order. Comparison is made with recent experimental results on wetting transitions in ternary surfactant systems.This paper is dedicated to J. K. Percus in honor of his 65th birthday.  相似文献   
5.
During the course of our investigation of the electron transfer properties of some redox species through highly hydrophobic long chain alkanethiol molecules on gold in aqueous and non-aqueous solvents, we obtained some intriguing results such as unusually low interfacial capacitance, very high values of impedance and film resistance, all of which pointed to the possible existence of a nanometer size interfacial gap between the hydrophobic monolayer and aqueous electrolyte. We explain this phenomenon by a model for the alkanethiol monolayer—aqueous electrolyte interface, in which the extremely hydrophobic alkanethiol film repels water molecules adjacent to it and in the process creates a shield between the monolayer film and water. This effectively increases the overall thickness of the dielectric layer that is manifested as an abnormally low value of interfacial capacitance. This behaviour is very much akin to the ‘drying transition’ proposed by Lum, Chandler and Weeks in their theory of length scale dependent hydrophobicity. For small hydrophobic units consisting of apolar solutes, the water molecules can reorganize around them without sacrificing their hydrogen bonds. Since for an extended hydrophobic unit, the existence of hydrogen bonded water structure close to it is geometrically unfavourable, there is a net depletion of water molecules in the vicinity leading to the possible creation of a hydrophobic interfacial gap.  相似文献   
6.
A previously developed laser spallation technique has been modified to measure the tensile strength of thin film interfaces in-situ at temperatures up to 1100°C. Tensile strengths of Nb/A-plane sapphire, FeCrAl/A-plane sapphire and FeCrAlY/A-plane sapphire were measured up to 950°C. The measured strengths at high temperatures were substantially lower compared with their corresponding strengths at ambient temperature. For example, at 850°C, the interface tensile strength for the Nb/sapphire (151 ± 17 MPa), FeCrAl/sapphire (62 ± 8 MPa) and FeCrAlY/sapphire (82 ± 11 MPa) interface systems were lower by factors of approximately, 3, 5, and 8, respectively, over their corresponding ambient values. These results underscore the importance of using such in-situ measured values under operating conditions as the failure criterion in any life prediction or reliability models of such coated systems where local interface temperature excursions are expected. The results on alloy film interfaces also demonstrate that the presence of Y increases the strength of FeCrAl/Al2O3 interfaces.  相似文献   
7.
Based on the discrete-structural theory of thin plates and shells, a calculation model for thin-walled elements consisting of a number of rigid anisotropic layers is put forward. It is assumed that the transverse shear and compression stresses are equal on the interfaces. Elastic slippage is allowed over the interfaces between adjacent layers. The solution to the problem is obtained in a geometrically nonlinear statement with account of the influence of transverse shear and compression strains. The stress-strain state of circular two-layer transversely isotropic plates, both without defects and with a local area of adhesion failure at their center, is investigated numerically and experimentally. It is found that the kinematic and static contact conditions on the interfaces of layered thin-walled structural members greatly affect the magnitude of stresses and strains. With the use of three variants of calculation models, in the cases of perfect and weakened contact conditions between layers, the calculation results for circular plates are compared. It is revealed that the variant suggested in this paper adequately reflects the behavior of layered thin-walled structural elements under large deformations. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 6, pp. 761–772, November–December, 2005.  相似文献   
8.
We investigate the structure and dynamics of the interface between two immiscible liquids in a three-dimensional disordered porous medium. We apply a phase-field model that includes explicitly disorder and discuss both spontaneous and forced imbibition. The structure of the interface is dominated by a length scale ξ× which arises from liquid conservation. We further show that disorder in the capillary and permeability act on different length scales and give rise to different scalings and structures of the interface properties. We conclude with a range of applications.  相似文献   
9.
A novel method of fabricating composite mosaic membranes was studied on the basis of interracial polymerization (IP) by coating a thin selective layer onto the surface of a micro-porous hollow-fiber membrane, in which, 2,5-diaminobenzene sulfonic acid was used as one monomer of the IP reaction, and a mixture of trimesoyl chloride (TMCI) and 4-(chloromethyl) benzoyl chloride as the other monomer. Through the IP reaction a thin selective layer with negatively charged groups could be first formed on the polyethersulfone (PES) support membrane. Then trimethylamine solution was introduced to modify the IP layer through a quaternization reaction. Thus the selective layer of this composite membrane contained both negatively charged and positively charged groups to perform the mosaic functionality. Characterization of the composite mosaic membranes was carried out through permeation experiments using different inorganic salts and dyes. The experimental results showed that the membranes could permeate both mono- and bi-valent inorganic salts, but reject larger organic molecules. Such a mosaic membrane is potentially useful for the separation of salts from water-soluble organics, especially in dye and textile industries.  相似文献   
10.
A new probabilistic cellular automaton model is introduced to simulate cluster and interface growth in two dimensions. The dynamics of this model is an extension to higher dimensions of the compact directed percolation studied by Essam. Numerical results indicate that the two-dimensional cluster coarsening and growth can be described only approximately by the conventional cluster size scaling due to a crossover in the growth mode. The spreading of the initially flat interface follows a purely diffusional,t 1/2, law.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号