首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
力学   5篇
物理学   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 180 毫秒
1
1.
傅建明 《力学季刊》1999,20(1):70-75
本文采用第二代低阶面元法给出了一种高升力外形外机翼位流计算方法。  相似文献   
2.
采用自适应直角网格计算三维增升装置绕流   总被引:2,自引:0,他引:2  
针对三维增升装置绕流,对存在剪刀叉的不连续外形,基于自适应直角网格,提出并介绍了分区和面搭接技术,采用变长宽比网格,进行了直角网格生成和流场Euler方程数值计算. 根据几何外形的特点,在直角网格生成过程中,以外形不连续面作为分区边界,对初始``根'网格实施分区处理,降低了整个网格的生成难度. 通过基于外形的自适应网格加密,详细描述了剪刀叉外形和缝道,提高了网格质量. 在分区边界面上,基于面搭接技术,构造重叠面积切割算法,实现边界两侧网格间的流场信息传递,保证流场计算中的通量守恒. 采用中心有限体积方法,结合双时间推进算法,完成了两段机翼、带增升襟翼翼身组合体绕流流场的Euler方程数值模拟,对计算结果与实验数据进行了对比,验证了所提方法、算法的合理性和实用性.  相似文献   
3.
4.
针对高升力装置构型模型结构复杂、流场变化剧烈等特点,本文采用分区拼接网格的思想分别按照流场和结构拓扑特点对高升力装置进行了网格分区。在分区的基础上逐块生成网格,减小了增升装置网格的生成难度,提高了网格质量,减少了网格数目。首先,研究了高升力装置的分区策略及流场特点;接着以MD30P-30N多段翼型为研究算例研究了网格比例和插值方法对计算结果的影响。经过分析对比可知:外部区域与近壁区域之间的比例不宜小于1:5;内部域网格比例不宜超过1:1.8,最好保持在1:1左右;计算中应该采用高阶精度插值以保证计算精度。采用某四段翼型进行了验证;最后采用NASA标准高升力装置进行了三维高升力装置流场数值模拟并与相应风洞实验数据及对接网格计算结果进行了比较与分析,验证了拼接网格技术的高效性与可靠性。同时分析研究了绕三维增升装置的流动及其周围复杂的粘性流动现象。  相似文献   
5.
数值模拟零质量射流与YLSG 107翼型绕流的干扰流场,探讨零质量射流在高升力翼型失速控制中的控制效果、控制特性及控制机理.数值模拟以积分形式雷诺平均Navier-Stokes(N-S)方程为控制方程,采用格心有限体积法进行求解.通过在喷口上施加非定常边界吹/吸边界条件模拟射流对翼型绕流的干扰.采用与风洞实验相同的来流状态和控制参数进行数值模拟,得到与实验相吻合的结果.为进一步研究控制特性和控制规律、提出改进的实验方案,研究不同动量系数、不同射流偏角对控制效果的影响,并对法向射流和近切向射流进行较深入的比较.研究表明,先前的风洞实验对应的射流动量系数(0.000 014)偏小是控制效果不显著的重要原因之一,必须达到0.001以上才有明显控制效果(射流动量系数为0.005时可使该翼型失速迎角增大2°,最大升力提高8.7%);近切向射流在失速控制方面明显优于法向射流.  相似文献   
6.
The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re=100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and , the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short “vortex street” in front of the airfoil and the “vortex street” induces a “wind”; against this “wind” the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect. The project supported by the National Natural Science Foundation of China (19725210)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号