首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   24篇
  国内免费   35篇
化学   121篇
晶体学   1篇
力学   26篇
综合类   5篇
数学   13篇
物理学   57篇
  2023年   4篇
  2022年   11篇
  2021年   8篇
  2020年   17篇
  2019年   10篇
  2018年   4篇
  2017年   9篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   17篇
  2012年   7篇
  2011年   5篇
  2010年   9篇
  2009年   14篇
  2008年   10篇
  2007年   12篇
  2006年   12篇
  2005年   5篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1993年   5篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1976年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
1.
A series of compounds with the general formula LiMn2 - x - y Cr x Ni y O4, where x + y = 0.05, 0.5, or 1.0, is synthesized. It is shown that all these compounds are pure-phase spinels with parameter aequal to 0.8193-0.8236 nm. Doping a stoichiometric lithium-manganese spinel simultaneously with chromium and nickel makes the spinel structure stable. The initial specific capacity of a spinel depends on its doping degree. Doping LiMn2O4 with chromium and nickel simultaneously at an Mn : Cr : Ni ratio of 195 : 3 : 2 raises the spinel's specific capacity and reduces the cycling degradation. The change in the discharge capacity of LiMn1.95Cr0.03Ni0.02O4 electrodes cycled at 20, 0, and -14°C is determined.  相似文献   
2.
Methods for concentrating dilute fluids using adsorption followed by partial thermal regeneration were studied using the simulation package ADSIM. The systems studied were NaCl in liquid water on Amberlite XD-2 resin and benzene vapor in nitrogen on activated carbon. Cycles studied included counter-current regeneration with pure hot fluid, co-current regeneration with pure hot fluid, a new process called Hot Feed Addition (HFA) consisting of co-current regeneration with pure hot fluid followed by hot feed, and cycling zone adsorption (co-current alternating hot and cold feeds with no pure regeneration fluid). The optimum system depends upon the conditions of the system and the value function chosen to evaluate the systems. For example, for benzene in nitrogen with hot regeneration gas at 467.4 K, cycling zone adsorption used no carrier gas, had the most concentrated benzene stream and a very pure nitrogen product, but the energy use was greater than the other processes. For liquid systems counter-current operation could produce the purest product, but regenerant requirements were high. With slightly lower purity requirements HFA reduced solvent usage and increased the concentration of the concentrated waste stream. For the liquid system all processes used approximately 3% or less of the energy that would be required for evaporation.  相似文献   
3.
The ability to bind reversibly molecular oxygen was established for a free-radical product of gossypol oxidation. Conversion of dianhydrogossypol into the stable biradical dioxodianhydrogossypol was viewed as the reason for interruption of the gossypol redox conversion cycle in the extracellular milieu of cotton steles.  相似文献   
4.
Magnesium batteries, like lithium-ion batteries, with higher abundance and similar efficiency, have drawn great interest for large-scale applications such as electric vehicles, grid energy storage and many more. On the other hand, the use of organic electrode materials allows high energy-performance, metal-free, environmentally friendly, versatile, lightweight, and economically efficient magnesium storage devices. In particular, the structural diversity and the simple activity of organic molecules make redox properties, and hence battery efficiency, easy to monitor. While organic magnesium batteries still in their infancy, this field becomes more and more promising because significant results were reported. To summarize the achievements in studies on organic cathodes for magnesium systems, their synthesis is discussed, combined with electrode design to provide the basis for controlling the electrochemical properties. Moreover, the techniques to synthesize organic materials with high-yield are mentioned. Finally, potential problems and prospects are explored to further improve organic cathodes.  相似文献   
5.
Low-field nuclear magnetic resonance techniques are employed to extract information about the effects introduced by the interaction with the surface on the rotational and translational dynamics of molecules confined inside a mesoporous carbon xerogel. The molecules under study were water, cyclohexane, and hexane. They were chosen due to their different interaction strength with the carbonaceous matrix. Frequency dependent longitudinal relaxation measurements, using the fast field cycling technique, allowed extraction of the fractal dimension of the carbon xerogel surface. It was observed that the measured value is influenced by the molecule affinity to the surface. Diffusion measurements, using the pulse field gradient technique, have revealed that the stronger interaction with the surface of cyclohexane and hexane molecules leads to an increased diffusive tortuosity, as compared with water.  相似文献   
6.
The present paper discusses synthesis, characterization, and blood compatibility studies of macroporous cryogels of PVA and starch. Biocompatible spongy porous hydrogels of polyvinyl alcohol–starch have been synthesized by repeated freezing–thawing methods and characterized by Infra red (FTIR) and environmental scanning electron microscopy (ESEM) techniques, respectively, to gain insights for structural and morphological features. The FTIR analysis of prepared cryogels indicated that starch was introduced into the network of cryogel possibly via formation of hydrogen bonds between the PVA and starch clusters. The “cryogels” were evaluated for their water uptake potentials and influence of various factors such as chemical architecture of the spongy hydrogels, pH and temperature of the swelling bath were investigated on the degree of water sorption by the cryogels. The hydrogels were also swollen in salt solutions and various simulated biological fluids. The biocompatibility of the prepared cryogels was judged by in vitro methods of blood–clot formation viz. percent haemolysis and protein (BSA) adsorption. The cryogels were also studied for their pores morphology and percent porosity and the effect of chemical composition on the extent of porosity was also investigated.  相似文献   
7.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li2MnO3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li2MnO3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li2Mn0.9Ti0.03O3的首圈放电比容量达到209 mAh·g-1,库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 mA·g-1时,掺杂改性的样品仍然可以放出120 mAh·g-1比容量,远高于同等电流密度下未掺杂的Li2MnO3原粉的比容量(52 mAh·g-1)。Ti掺杂可有效地改善Li2MnO3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   
8.
The redox cycle between alloxan, a mild oxidizing agent, and its reduction partner, dialuric acid, is investigated using density functional theory. It is found that the initial step is the one‐electron reduction of alloxan followed by protonation, yielding a stable neutral radical, AH·. The radical can then accept another electron to form the dialuric acid anion. The formation of this anion is thermodynamically favored in both the gas phase and in solution. The radical may also undergo dimerization to alloxantin, followed by the transfer of a proton from one moiety to another, yielding alloxan and dialuric acid. This reduction is thermodynamically feasible in the gas phase, but not in aqueous solution. In the case of reduction of alloxan by glutathione at the physiological pH, computed redox potentials indicate that a two‐electron reduction is the favored course of reaction, yielding directly the dialuric acid anion, which then undergoes aerial oxidation to yield the superoxide radical. The redox cycling between alloxan and dialuric acid is responsible for the diabetogenic activity of alloxan, producing cytotoxic radicals on reoxidation of dialuric acid. © 2013 Wiley Periodicals, Inc.  相似文献   
9.
《Comptes Rendus Chimie》2014,17(7-8):752-759
Single-cell and half-cell degradation test procedures were evaluated for carbon-supported Pt/C, PtCo/C and PtNi/C catalysts. Half-cell analyses were employed to understand the effect of the number of cycles and of the scan rate over the cathode catalysts degradation under potential cycling from 0.6 to 1.2 V. The data suggested a time-dependent degradation for all three catalytic systems. Single-cell measurements were used to evaluate the impact of catalyst degradation on fuel cell performance. The measurements in both setups showed similar ECSA and ORR mass activity losses. Specific degradation mechanisms related to Pt dissolution, Pt agglomeration, and transitional metal leaching were quantified and correlated with performance losses.  相似文献   
10.
In light of the proposed equivalent method, a three-dimensional structural modeling of InSb infrared focal plane arrays (IRFPAs) is created, and the simulated strain distribution is identical to the deformation distribution on the top surface of InSb IRFPAs. After comparing the deformation features at different regions with the structural characteristics of IRFPAs, we infer that the flatness of InSb IRFPAs will be improved with a thinner indium bump array, and this inference is verified by subsequent simulation results. That is, when the diameter of indium bump is smaller than 20 μm, the simulated Z-components of strain on the whole top surface of InSb IRFPAs is uniform, and the deformation amplitude is small. When the diameter of indium bump is larger than 28 μm, the simulated Z-components of strain increases rapidly with the thicker indium bump, and the flatness of InSb IRFPAs is worsened rapidly. According to the changing trend of deformation amplitude with diameters of indium bump, and employing element pitches normalization method, a design rule of indium bump is proposed. That is, when the diameter of indium bump is shorter than 0.4 times the element pitch, the flatness of InSb IRFPAs is in an acceptable range. This design rule was supported by different IRFPAs with different formats delivered by several main research groups for achieving a longer cycling life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号