首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
化学   2篇
力学   6篇
物理学   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1999年   2篇
  1984年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Based upon a thermodynamical approach, the generalized Onsager type of relaxation of van der Waals networks is presented. By linearly and identically coupling the set hidden variables to the network, the memory function of the system can be related to the equilibrium strain-energy function. The relaxation behavior of real networks on stretching can quantitatively be described by means of a distribution of relaxation times known from small strain experiments. Some new and interesting conclusions are discussed as to how the macroscopically non-linear visco-elastic response might be interpreted.  相似文献   
2.
Experimental data for simple tension suggest that there is a power–law kinematic relationship between the stretches for large classes of slightly compressible (or almost incompressible) non-linearly elastic materials that are homogeneous and isotropic. Here we confine attention to a particular constitutive model for such materials that is of generalized Varga type. The corresponding incompressible model has been shown to be particularly tractable analytically. We examine the response of the slightly compressible material to some nonhomogeneous deformations and compare the results with those for the corresponding incompressible model. Thus the effects of slight compressibility for some basic nonhomogeneous deformations are explicitly assessed. The results are fundamental to the analytical modeling of almost incompressible hyperelastic materials and are of importance in the context of finite element methods where slight compressibility is usually introduced to avoid element locking due to the incompressibility constraint. It is also shown that even for slightly compressible materials, the volume change can be significant in certain situations.   相似文献   
3.
For infinite perfectly elastic Mooney materials, nonlinear plane waves are examined in both two and three dimensions. In two dimensions, longitudinal and shear plane waves are examined, while in three dimensions, longitudinal and torsional plane waves are considered. These exact dynamic deformations, applying to the incompressible perfectly elastic Mooney material, can be viewed as extensions of the corresponding static deformations first derived by Adkins [1] and Klingbeil and Shield [2]. Furthermore, the Mooney strain-energy function is the most general material admitting nontrivial dynamic deformations of this type. For two dimensions the determination of plane wave solutions reduces to elementary mathematical analysis, while in three dimensions an integral of the governing system of highly nonlinear ordinary differential equations is determined. In the latter case, solutions corresponding to particular parameter values are shown graphically. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
4.
5.
In three recent papers [6–8], the present authors show that both plane strain and axially symmetric deformations of perfectly elastic incompressible Varga materials admit certain first integrals, which means that solutions for finite elastic deformations can be determined from a second order partial differential equation, rather than a fourth order one. For plane strain deformations there are three such integrals, while for axially symmetric deformations there are two. The purpose of the present papers is to present the general equations for small deformations which are superimposed upon a large deformation, which is assumed to satisfy one of the previously obtained first integrals. The governing partial differential equations for the small superimposed deformations are linear but highly nonhomogeneous, and we present here the precise structure of these equations in terms of a second-order linear differential operator D2, which is first defined by examining solutions of the known integrals. The results obtained are illustrated with reference to a number of specific large deformations which are known solutions of the first integrals. For deformations of limited magnitude, the Varga strain-energy function has been established as a reasonable prototype for both natural rubber vulcanizates and styrene-butadiene vulcanizates. Plane strain deformations are examined in this present part while axially symmetric deformations are considered in Part II [16]. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
基于应变能准则优化模型的骨骼重建数值模拟   总被引:1,自引:0,他引:1  
将骨骼重建的适应性弹性理论及参考应变能理论与结构优化及有限元方法结合,建立了基于应变能准则优化模型的骨骼重建数值模拟方法,研究骨骼内部重建的机理和规律。以单元应变能密度为刺激源,由内部材料的分布变化来模拟骨重建的过程和规律。通过对股骨头重建的数值模拟,取得了与临床实验相符的结果,也证实了骨结构形态是对力学环境的最佳适应,定量地反映了力学刺激对骨骼重建的影响,得到了符合骨骼重建规律的结论。  相似文献   
7.
In the theory of nonlinear elasticity of rubber-like materials, if a homogeneous isotropic compressible material is described by a strain–energy function that is a homogeneous function of the principal stretches, then the equations of equilibrium for axisymmetric deformations reduce to a separable first-order ordinary differential equation. For a particular class of such strain–energy functions, this property is used to obtain a general parametric solution to the equilibrium equation for plane strain bending of cylindrical sectors. Specification of the arbitrary function that appears in such strain–energy functions yields some parametric solutions. In some cases, the parameter can be eliminated to yield closed-form solutions in implicit or explicit form. Other possible forms for the arbitrary constitutive function that are likely to yield such solutions are also indicated.  相似文献   
8.
In Part I of this article, we have formulated the general structure of the equations governing small plane strain deformations which are superimposed upon a known large plane strain deformation for the perfectly elastic incompressible 'modified' Varga material, and assuming only that the initial large plane deformation is a known solution of one of three first integrals previously derived by the authors. For axially summetric deformations there are only two such first integrals, one of which applies only to the single term Varga strain-energy function, and we give here the corresponding general equations for small superimposed deformations. As an illustration, a partial analysis for the case of small deformations superimposed upon the eversion of a thick spherical shell is examined. The Varga strain-energy functions are known to apply to both natural and synthetic rubber, provided the magnitude of the deformation is restricted. Their behaviour in both simple tension and equibiaxial tension, and in comparison to experimental data, is shown graphically in Part I of this paper [1]. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
9.
张建民  徐可为 《物理学报》2004,53(1):176-181
根据弹性理论和多晶膜的屈服强度公式,计算了附着在基体上体心立方多晶薄膜中不同取向晶粒中的应变能密度.结果表明:1)在屈服之前,对Fe和Ta两种薄膜,4个最小的应变能密度对应的晶粒取向依次为(100),(510),(410)和(511);对Cr,Mo,Nb和V四种薄膜,4个最小的应变能密度对应的晶粒取向依次为(111),(332),(322)和(221);对W膜,应变能密度与晶粒取向无关.2)在屈服的体心立方多晶膜中,4个最小的应变能密度对应的晶粒取向依次为(100),(111),(110)和(411).从 关键词: 体心立方多晶薄膜 晶粒取向 应变能密度 织构  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号