首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  国内免费   1篇
化学   8篇
力学   36篇
数学   5篇
物理学   8篇
  2021年   2篇
  2020年   11篇
  2019年   1篇
  2017年   2篇
  2016年   9篇
  2015年   6篇
  2014年   3篇
  2013年   2篇
  2011年   5篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  1999年   2篇
  1996年   2篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
This paper presents an evaluation method for measuring the sound pressure level and mode shapes of tire cavity resonance by using a multi-microphone system. Two commercial tires were evaluated to compare abilities of noise suppression by means of this method in the range of the first resonance from 200 to 260 Hz. One tire was a special tire that suppresses tire cavity resonance with polyurethane foam mounted on the tire’s inner liner. The other tire was a normal tire with no polyurethane foam. The mode shape change from vertical to horizontal direction in both tires. However, the sound pressure level of the special tire was lower than the normal tire at all frequencies.  相似文献   
2.
Dynamic Mechanical Analysis (DMA) systems are measurement devices for obtaining master curves and complex modules of viscoelastic materials, such as rubbers. The conventional DMAs measurement systems in market have several limitations, which restrict their ability for operating at high frequencies. Thus, Williams, Landel and Ferry (WLF) relation is used to produce master curves and predict the material properties at high frequencies. In conventional DMAs, experiments are done in a range of temperatures, and then a master curve is made for a chosen reference temperature by shifting the measurements data to high frequencies. Therefore, the obtained results, which are not based on direct measurements, can be inaccurate. In order to overcome this problem a new simple shear high-frequency DMA (HFDMA) system is designed and built to directly measure the dynamic mechanical properties of viscoelastic material at high frequencies and the strain levels sufficient for tire manufacturers. The new HFDMA can be used to test any viscoelastic materials which have glass transmission temperature (Tg) lower than room temperature (about 23 °C) such as the Styrene-butadiene rubber (SBR). The SBR is the base material for tire tread. The designing process of this new HFDMA is presented in this paper. The rubber specimen shape is chosen by taking into account the shear elastic wave effect, bending, buckling effect and heat generation in the specimen. The repeatability test is accomplished to ensure that the results obtained from the new HFDMA are repeatable and the repeatability uncertainty is about 0.04%. The new HFDMA is validated by comparing to the direct test results of conventional DMA at 100 Hz. The direct high frequency (5 kHz) complex shear modulus and damping factor are compared with the master curve of the conventional DMA developed by the use of WLF relation for SBR. This comparison revealed that the complex shear modulus and damping factor of the SBR obtained from the HFDMA at 5 kHz and 0.05% strain amplitude are about 7% and 6.5% higher than those obtained from the conventional DMA, respectively.  相似文献   
3.
In the present study, the effect of vertical load, tire inflation pressure and soil moisture content on power loss in tire under controlled soil bin conditions were investigated. Also a finite element model of tire-soil interaction in order to achieve a suitable model for predicting power loss in tire was created. Increasing the vertical load on the tire had a noteworthy impact on increasing the tire contact volume with the soil, reducing the percentage of slip, and increasing the rolling resistance; although, reducing the load on the tire had the opposite effect. At a constant inflation pressure, by increasing the vertical load on the tire, the amount of power loss due to the rolling resistance and the total power loss in the tire increased. Increase in soil moisture content increased the power loss caused by slip. Increasing the inflation pressure at a constant vertical load, also increasing the soil moisture content, led to an increase in the power loss caused by rolling resistance, and increase total power loss. The obtained error for estimating power loss of rolling resistance and total power loss was satisfactory and confirmed the acceptability of the model for power loss estimation.  相似文献   
4.
Lot  Roberto 《Meccanica》2004,39(3):207-220
This paper describes a model for motorcycle tires based on a physical interpretation of experimental data. In this model the real shape of the tire carcass is accurately described and its deformability is taken into account. The actual position of the contact point, that is, the center of the contact patch, is calculated. The concept of instantaneous slip is defined by calculating the longitudinal slip and sideslip angles using the velocity of the actual contact point, which moves with respect to the rim. Tire forces and torques are applied on the actual contact point and calculated according to Pacejkas magic formula. The coupling of sliding properties with elastic ones and the use of the instantaneous slip concept make it possible to properly describe both steady state and transient behavior using the same relations, thus avoiding the use of any auxiliary equations.  相似文献   
5.
An analytical model to estimate longitudinal traction of a tire in snow was developed and verified to have good predictability in comparison with measurements. Snow traction of a tire is composed of four kinds of forces in this model: braking force attributable to snow compression, shear force of snow in void (space between tread blocks), frictional force, and digging force (edge effect generated by sipes and blocks). The mechanical characteristics of snow were considered in the prediction of braking force and shear force, but were not considered in the prediction of other forces. The contribution of shear force of snow in void and the frictional force was large in static traction (traction just before a tire slips). On the other hand, the contributions of digging force and frictional force were large in situations involving high slip ratios.  相似文献   
6.
研究了高反式-1,4-丁二烯-异戊二烯共聚橡胶(TBIR)的生胶性能及其在轿车轮胎带束层中的应用。结果表明,随丁二烯单体单元含量增加,TBIR生胶的玻璃化转变温度、结晶熔融焓、生胶强度和硬度逐渐降低。硫化胶性能测试表明,TBIR硫化胶的定伸应力、回弹性能以及耐老化性能优于NR硫化胶,TBIR-40硫化胶的拉伸强度和撕裂强度明显高于NR硫化胶。采用10~30份TBIR取代NR应用于轿车轮胎带束层配方,并用硫化胶拉伸强度、拉断伸长率、撕裂强度和钢丝帘线抽出力处于较高水平,定伸应力、硬度、回弹性能和耐老化性能较对比胶提高,含TBIR的轮胎带束层胶料具有更加优异的综合性能。DMA结果表明,NR与TBIR相容性较好,NR/TBIR并用硫化胶具有更低的内耗。TEM结果表明,NR/TBIR并用胶具有较好的填料分散性。  相似文献   
7.
Close-range digital photogrammetry is utilized to construct the 3D models of an agricultural tire footprint. These models were then analyzed to obtain the tire footprint depth, area and volume. The procedure of using the photogrammetry technique for developing 3D models of a tire footprint on soil as well as an assessment of the accuracy of the 3D models are discussed in this paper. Testing was conducted using a tractor tire in a large soil bin in a lab to generate a single tire footprint along with a rolling tire test to simulate a longer tire rut. Our experiments showed that the close-range digital photogrammetry provides an efficient and accurate method to assess the depth and volume of the tire footprint in soil.  相似文献   
8.
The traveling performance of off-the-road vehicles, such as construction machinery and exploration rovers, significantly depends on the interaction between the ground and the traveling mechanism, since inelastic ground deformation and frictional sliding phenomena are induced by the vehicle’s movement. In general, a tread surface causes anisotropic frictional interaction behavior on a macroscopic scale. In this study, an acceptable frictional interaction model was implemented to finite element method to rationally examine the anisotropic frictional interaction behavior between the tire and the ground. Finite element analysis of the single tire traveling performance, including certain slippage and side slip (skid), was then carried out to examine the effect of the anisotropic frictional interaction on the numerical results for the drawbar-pull and side force.  相似文献   
9.
Increased traffic safety levels are of highest importance, especially when driving on icy roads. Experimental investigations for a detailed understanding of pneumatic tire performance on ice are expensive and time consuming. The changing ambient and ice conditions make it challenging to maintain repeatable test conditions during a test program. This paper presents a tire–ice contact model (TIM) to simulate the friction levels between the tire and the ice surface. The main goal of this model is to predict the tire–ice friction based on the temperature rise in the contact patch. The temperature rise prediction in the contact patch is based on the pressure distribution in the contact patch and on the thermal properties of the tread compound and of the ice surface. The contact patch is next classified into wet and dry regions based on the ice surface temperature and temperature rise simulations. The principle of thermal balance is then applied to compute the friction level in the contact patch. The tire–ice contact model is validated by comparing friction levels from simulations and experimental findings. Friction levels at different conditions of load, inflation pressure, and ice temperatures have been simulated using the tire–ice contact model and compared to experimental findings.  相似文献   
10.
A number of datasets regarding the heavy weighted floor impact sound level and the driving point impedance level, i.e., twenty times the common logarithm of driving point impedance at an exciting point, were measured in existing residential buildings before the floor finishing of the excitation room and the ceiling finishing of the receiving room were installed. These data were compared to the calculated values by the impedance method, i.e., a practical method that estimates vibration energy of an excited slab using the driving point impedance at the exciting point as a major factor, as well as those using the Finite Element Method (FEM) models of slabs. Furthermore, correlations between the residual errors and the major dimensions of the receiving rooms were investigated. Two major error factors were found to influence the calculated values by the impedance method. The spectral characteristic of the tire impact source within the 63 Hz band effectively decreased the prediction errors when it was included in the calculation and combined with the FEM models of slabs. The length of the shorter side of the receiving room plan correlated to the residual errors of the receiving rooms having a pair of flat parallel walls. These errors arise from the fact that the receiving points were placed at the central and quarter positions within the wall distance, where the nodes of the horizontal mode exist. It was not possible to identify another dimension of the receiving room that significantly correlates to the residual errors of the prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号