首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
力学   12篇
  2017年   1篇
  2016年   2篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
排序方式: 共有12条查询结果,搜索用时 78 毫秒
1.
Mathematical models to predict the mode and extent of deformation occurring below sinkage plates are presented in the first part of this paper which encompasses the theoretical approach to the subject. These models are based on previous work by Earl (Earl R. Assessment of the behaviour of field soils during compression. Journal of Agricultural Engineering Research 1997;68:147–57)who developed a procedure to predict the likely mode of deformation using confined compression tests carried out alongside plate sinkage tests. This work suggested that soil behaviour, during increasing compression under a sinkage plate, is governed by three processes; (i) compaction below the plate with constant lateral stress, (ii) compaction with increasing lateral stress, and (iii) displacement and compaction of soil laterally. The aim of this second part to the paper is to observe soil deformation processes occurring below a circular sinkage plate to examine (i) whether the three phases of deformation referred to above occur in practice, and (ii) the accuracy of the models for predicting the soil deformation processes that occur. Tests were carried out on sandy loam soil under controlled conditions in a soil bin. Observations of deformation processes, recorded using long-exposure photography, revealed that during the initial stages of sinkage (a few millimetres), the corresponding disturbance of soil below the plate extended disproportionately further and was cylindrical in form. As sinkage progressed, the deformation process went through a transitional stage before reaching the more widely recognised form of the development of an inverted cone of compacted soil directly below the plate which moved with the plate causing lateral soil movement and compaction. Predictions for a medium density sandy loam were found to be in broad agreement with soil behaviour under a semi-circular sinkage plate observed behind a sheet of tempered glass under controlled conditions in a soil tank.  相似文献   
2.
A movable lug wheel using a rollers-sliding groove mechanism was designed, constructed and tested. Two types of lug moving patterns of the movable lug wheel were proposed and evaluated. Tests were conducted in a soil bin test apparatus to determine the traction performance of the wheel as affected by lug moving pattern, lug spacing, horizontal load and vertical load. Similar tests were also conducted using a fixed lug wheel. Generally, under the same level of vertical load, the fixed lug wheel sank more than the movable lug wheels did. However in general, under various horizontal loads, there was no significant difference of slip between the movable lug wheel and the fixed lug wheel. Among the test lug wheels, the movable lug wheel with lug moving pattern-2 required the smallest driving torque and developed the highest traction efficiency.  相似文献   
3.
The objective of this paper is to find an optimal method for the design of tracked base travel systems for special purpose vehicles and robotic machines that may be required to steer over a light bonded terrain composed of fresh concrete. For the case of a vehicle traveling on a weak fresh concrete during construction, the paper presents detailed comparative studies of the steering performances of a small model tracked test vehicle with alternative amount of steering ratio for various concrete slump values. For these studies a detailed simulation analytical method has been developed. From this work it is proven, in comparison to experiment, that the simulation analytical method is useful for predicting various steering performances of a test tracked vehicle running upon soft fresh concrete of various consistencies.  相似文献   
4.
Bekker’s semi-empirically derived equations allow the designers of off-road vehicles to understand and predict vehicle mobility performance over deformable terrains. However, there are several underlying assumptions that prevent Bekker theory from being successfully applied to small vehicles. Specifically, Bekker’s sinkage and compaction resistance equations are inaccurate for vehicles with wheel diameters less than approximately 50 cm and normal loading less than approximately 45 N. This paper presents a modified pressure-sinkage model that is shown to reduce sinkage and compaction resistance model errors significantly. The modification is validated with results from 160 experiments using five wheel diameters and three soil types.  相似文献   
5.
Modeling and simulation of vehicles in sand is critical for characterizing off-road mobility in arid and coastal regions. This paper presents improved algorithms for calculating sinkage (z) of wheeled vehicles operating on loose dry sand. The algorithms are developed based on 2737 tests conducted on sand with 23 different wheel configurations. The test results were collected from Database Records for Off-road Vehicle Environments (DROVE), a recently developed database of tests conducted with wheeled vehicles operating in loose dry sand. The study considers tire diameters from 36 to 124 cm with wheel loads of 0.19–36.12 kN. The proposed algorithms present a simple form of sinkage relationships, which only require the ratio of the wheel ground contact pressure and soil strength represented by cone index. The proposed models are compared against existing closed form solutions defined in the Vehicle Terrain Interface (VTI) model. Comparisons suggest that incorporating the proposed models into the VTI model can provide comparable predictive accuracy with simpler algorithms. In addition to simplicity, it is believed that the relationship between cone index (representing soil shear strength) and the contact pressure (representing the applied pressure to tire-soil interface) can better capture the physics of the problem being evaluated.  相似文献   
6.
A substantial number of laboratory and field tests have been conducted to assess performance of various wheel designs in loose soils. However, there is no consolidated database which includes data from several sources. In this study, a consolidated database was created on tests conducted with wheeled vehicles operating in loose dry sand to evaluate existing soil mobility algorithms. The database included wheels of different diameters, widths, heights, and inflation pressures, operating under varying loading conditions. Nine technical reports were identified containing 5253 records, based on existing archives of laboratory and field tests of wheels operating in loose soils. The database structure was assembled to include traction performance parameters such as drawbar pull, torque, traction, motion resistance, sinkage, and wheel slip. Once developed, the database was used to evaluate and support validation of closed form solutions for these variables in the Vehicle Terrain Interface (VTI) model. The correlation between predicted and measured traction performance parameters was evaluated. Comparison of the predicted versus measured performance parameters suggests that the closed form solutions within the VTI model are functional but can be further improved to provide more accurate predictions for off-road vehicle performance.  相似文献   
7.
To successfully deploy a wheeled mobile robot on deformable rough terrains, the wheel-terrain interaction mechanics should be considered. Skid terramechanics is an essential part of the wheel terramechanics and has been studied by the authors based on the wheel sinkage obtained using a linear displacement sensor that does not consider soil bulldozing effect. The sinkage measured by a newly developed wheel via detecting the entrance angle is about 2 times of that measured by the linear displacement sensor. On the basis of the wheel sinkage that takes the soil bulldozing effect into account, a linear function is proposed to the sinkage exponent. Soil flow in the rear region of wheel-soil interface is considered in the calculation of soil shear displacement, and its average velocity is assumed to be equal to the tangential velocity component of the transition point of shear stress. To compute the normal stress in the rear region directly, the connection of the entrance and leaving points is supposed as the reference of wheel sinkage. The wheel performance can be accurately estimated using the proposed model by comparing the simulation results against the experimental data obtained using two wheels and on two types of sands.  相似文献   
8.
The development and success of the Swedish Combat Vehicle CV90 has demonstrated the abilities of the author in the field of terramechanics related to tracked military vehicles. The honour of the Bekker–Reece–Radforth Award 2002 has been granted in recognition of these achievements made during the author's employment at Hägglunds Vehicle AB since 1975. Hägglunds Vehicle AB has been a producer of military vehicles since the late 1950s, although the first years concentrated on production only. From the early 1960s, Hägglunds developed a number of its own tracked vehicles, all of which were influenced by the mobility demands dictated by their intended use in severe terrain conditions, such as those found in Northern Scandinavia. This paper presents a brief history of the advancement of tracked vehicle technology at Hägglunds Vehicle AB. The concepts discussed include: ground pressure, the number of road-wheels, articulated steering, track tension, track attack angle, sinkage, belly effects, and the use of terramechanic simulation. The success of the CV90 demonstrates that the combination of practical experience, terrain knowledge, and terramechanic simulations can effect substantial improvements in vehicle mobility. Evaluation of the CV90 versus other modern combat vehicles of the same class has shown that the CV90 possesses considerably higher mobility and speed under severe terrain conditions. These two attributes provide CV90 with the ability to access terrain that similar vehicles cannot, thus giving the military user greater mobility options.  相似文献   
9.
The sinkage of the bearing tracks or wheels of a vehicle in soil induces a resistance to travel motion. Usually it is determined with methods based on the modelling of soil pressure-sinkage curves. This article presents a new method for modelling soil penetration tests as a result of experimental study of three standard soils. These soils have been chosen to represent the mechanical properties of a range of soils: a sand for frictional soils, a silt for cohesive soils and a silty sand for cohesive frictional soils. The models take into account the mechanical behaviour of soils where a small vertical sinkage can be assumed analogous to elastic behaviour, while for large sinkage, the analogy is with plastic behaviour. A New Model of Mobility (N2M) is proposed. A new equation relating the pressure p and the sinkage z is governed by four parameters which are constant for a specific soil in a given physical state. These parameters can be calculated with two sinkage tests made with two different plate diameters and are particularly stable: a small change of one of them involves a small change of the modelling. They are independent of the size of the sinkage plate and hence could pave the way for the extrapolation to the scale of full size vehicles. For the tested soils, comparison of the model results with experimental tests is very promising.  相似文献   
10.
This study focuses on improving the understanding of the mobility of lightweight wheeled vehicles on sand by testing the significance of payload, ground speed, sand gradation/grain size, and sand moisture content on contact patch pressure and tire sinkage. Extensive testing of a lightweight wheeled all-terrain vehicle (ATV) was structured in two experiments. Tire sinkage was measured at the width-wise center of the imprint of both the tread and the carcass. Pressure distribution in the contact patch was recorded using an embedded pressure pad, from which the average and peak (and difference) pressures were found. In the first experiment, measurements were taken each time the ATV was driven over combinations of four plots of groomed sand, two moisture contents, three payloads, and three speeds. Average pressure was highly affected (95+% confidence) by sand grade, vehicle speed, and payload and the interactions of sand grade-speed, and sand grade-moisture content-vehicle speed, and borderline affected (90-94.9% confidence) by the moisture content-speed interaction. In the second experiment, the ATV was driven over each plot of dry sand one hundred consecutive times at one speed-payload combination without grooming between runs, showing the cumulative effect of multiple passes over each sand pit on each measure of mobility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号