首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
力学   1篇
  2020年   1篇
  2017年   1篇
  2014年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Nitrile butadiene rubber, NBR, structural foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples after the application of cyclic stress-strain were measured. The effect of the cyclic stress-strain on strain energy density of ADC/K foaming agent-filled NBR rubber composites was studied. The mechanical parameters were found to depend on the foaming agent concentration and on the pre-cyclic fatigue number. Results also indicated that the strain energy decreased with filler concentration.The effects of the cyclic stress-strain on the conductivity of ADC/K foaming agent-filled NBR rubber composites were studied. The electrical properties were found to depend on the foaming agent concentration, the strain amplitude and the number of stress-strain cycles of pre-strain. This study was assisted by the current-voltage characteristics which were measured under the effect of different compression ratios: 0%, 5%, 10%, 15%, 20%, 25% and 30%. The free current carrier mobility and the equilibrium concentration of charge carriers in the conduction band were produced as functions of compressive strain. Results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor.  相似文献   
2.
3.
Controlled buckling can impart stretchable mechanics to brittle materials when integrated as thin films on soft, elastomeric substrates. Typical elastomers are permeable to fluids, however, and therefor unable to provide robust barriers to entry of water, for instance, into devices built with the supported thin films. In addition, the mechanical strength of a system dominated by a soft substrate is often unsatisfactory for realistic applications. We show that introduction of a bi-layer substrate yields a robust, high strength system that maintains stretchable characteristics, with a soft layer on top of a relatively stiff layer in the substrate. As a mechanical protection, a soft encapsulation layer can be used on top of the device and the stretchability of the encapsulated system is smaller than that of the system without encapsulation. A simple, analytic model, validated by numerical analysis and FEA, is established for stiff thin films on a bi-layer substrate, and is useful to the design of stretchable systems.  相似文献   
4.
Sandwich composite panels are widely used and significant in structural applications such as aerospace, shipbuilding and transportation, etc. This is due to their specific properties such as specific stiffness, strength and energy absorption. Still, many innovations are required to develop and upgrade their mechanical properties in various loadings and conditions, specifically in bending loads. One of the methods to enhance the properties of sandwich structures is to employ various advanced materials in these structures to change their acquired properties. In the present research work, sandwich composite panels made by fiber metal laminate like glass laminate aluminum reinforced epoxy (GLARE) as the facesheets and PVC polymer foam as the core material are investigated in flexural (bending) loading condition. To change or enhance the behaviour of sandwich panel in bending loads, shape memory alloy wires are also embedded in between glass fiber reinforced epoxy composite layers in fiber metal laminate facesheets. The shape memory wires are also pre-strained in fiber reinforced epoxy composite in sandwich panels. To study the flexural properties of sandwich panels with fiber metal laminate facesheets, the effect of shape memory alloy wires and also the effect of pre-straining of the wires, three types of sandwich panels are considered and made including panels without shape memory alloy wire, two wires with 0% tensile pre-strain, and two wires with 5% tensile pre-strain for the same cross section. Due to the importance of bending properties in structural applications, the sandwich composite specimens are subjected to flexural test according to ASTM standards. The maximum of 13% increase in maximum bending load and 84% increase in breaking load for the specimens with 0% pre-strained wires are achieved. Also, the maximum displacement and the energy absorption for the specimen with 5% pre-strain was enhanced by 26.5% and 37%, respectively. The energy absorption during the flexural test is greater in case of the specimen with pre-strained wires. Moreover, the specimens with pre-strained wires show better integrity of the structure after the failure in bending. The results represent the advantage effect of shape memory alloy wires on sandwich composite panel's behaviour in bending.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号