首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
力学   4篇
  2001年   1篇
  2000年   3篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
The recently developed natural radon tracer method has potential as a rapid, lowcost, nondestructive, and noninvasive method for quantifying NAPL contamination. In the subsurface, radon222 (radon) is produced by the decay of naturally occurring radium226 contained in the mineral fraction of aquifer solids. In groundwater radon occurs as a dissolved gas, with a halflife of 3.83 days. In the absence of NAPL, the radon concentration in groundwater quickly reaches a maximum value that is determined by the mineral composition of the aquifer solids, which controls the rate of radon emanation. In the presence of NAPL, however, the radon concentration in the groundwater is substantially reduced due to the preferential partitioning of radon into the organic NAPL phase. A simple equilibrium model and supporting laboratory studies show the reduction in radon concentration can be quantitatively correlated with residual NAPL saturation. Thus, by measuring the spatial distribution in radon it may be possible to identify locations where residual NAPL is present and to quantify the NAPL saturation. When the basic processes of partitioning, radon emanation from the aquifer solids, and firstorder decay are incorporated into an advective/dispersive transport model, good agreement is obtained with the results of laboratory and field experiments. Model sensitivity analyses shows many factors can contribute to the radon concentration response, including the length of the NAPL zone, NAPL saturation, groundwater velocity, porosity, and radon emanation. Thus, care must be taken when applying the radon method to locate and quantify NAPL contamination in the subsurface.  相似文献   
2.
Nonequilibrium air–water mass transfer experiments using a laboratoryscale singleair channel setup were conducted to investigate the influence of porous media and air velocity on the fate of nonaqueous phase liquids (NAPLs) under air sparging conditions. Benzene was used as a NAPL while silica sand 30/50 (dp50=0.305mm, uniformity coefficient, UC=1.41) and silica sand 70/100 (dp50=0.168mm, UC=1.64) were used as porous media. Air velocities ranged from 0 to 1.4cm/s. Mass transfer coefficients for the dissolution of NAPLs were estimated by numerical methods using a twodimensional dissolution–diffusion–volatilization model. The study showed that the presence of advective airflow in air channels controlled the spreading of the dissolved phase but the overall removal efficiency was independent of airflow rate. Removal efficiencies and dissolution rates of the NAPL were found to be strongly affected by the mean particle size of the porous media during air sparging. More than 50% reduction in the removal rate of benzene was found when silica sand 70/100 was used instead of silica sand 30/50. Mass transfer coefficients for the dissolution of benzene NAPL were estimated to be 0.0041cm/min for silica sand 70/100 and 0.227cm/min for silica sand 30/50. Increasing the air velocity from 0.6 to 1.4cm/s for silica sand 30/50 did not result in a higher removal rate. Quantitative estimation of the dissolution rates of benzene NAPL indicated that the dissolution rates (between 0.227 and 0.265cm/min) were similar in magnitude for the same porous media but different air flow rates. Based on the visualization study, air sparging may be used to control the spreading of the dissolved phase even when the glob of NAPL is several centimeters away from the air–water interface of the air channels.  相似文献   
3.
Zhu  J.  Sykes  J. F. 《Transport in Porous Media》2000,39(3):289-314
A multiphase flow and transport numerical model is developed to study the effects of porous media heterogeneities on residual NAPL mass partitioning and transport of dissolved and/or volatilized NAPL mass in variably saturated media. The results indicate the significance of porous media heterogeneity in influencing the mass transfer processes and NAPL transport in the subsurface. Among the parameters investigated in this study, the heterogeneity of the permeability field has the most significant influence on the NAPL mass partitioning and transport. In general, the heterogeneity of the porous media properties enhances the NAPL mass plume spreading in both the water phase and the gas phase while the influence on the water phase is much more significant. Overall, the porous media property heterogeneities tend to increase the accumulation of NAPL mass in the water phase. The nonequilibrium mass transfer processes result in the expected trend of decreasing the NAPL mass dissipation rate and causing long-term groundwater contamination.  相似文献   
4.
This study investigated how features of mass distribution within a source area control the pattern of contaminant plume evolution. A series of numerical trials was conducted which simulated contaminant migration in a three-dimensional saturated porous media with multiple source patches representing zones of contamination. Results showed that the extent of mixing near the source was greatly affected by both advection and dispersive mixing processes. The factors affecting the concentration distribution in the dissolved plume were size and distribution of source patches, dispersivity values, and the ratio of total patch area to the source area. The influence of dispersive mixing increased as the size of source patches decreased. However, dispersion was less important when patches were clustered or the ratio of total patch area to the source area increased. The variations in concentration values near the source, which were caused by differences in sizes and distribution of patches, diminished as the contaminant traveled further from the source. This result implies that detailed information on source characteristics generally would not be required beyond a certain travel distance. The exception in this regard is the ratio of total patch area to the source area, i.e., a zero-difference point. However, the location of this zero-difference point cannot be predicted easily because the location was affected by several source characteristics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号