首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   1篇
力学   2篇
物理学   2篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2008年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
We have designed, fabricated and characterized a multi-layers antireflection coating on multispectral ZnS substrate, suitable for the infrared range of 8–12 μm. The 4-layers coating (Ge/ZnS/Ge/ZnS) with optimized thicknesses was fabricated by PVD technique and studied by FTIR, nanoindentation and AFM. From FTIR spectroscopy it was found that, in the wavelength range of 8–12 μm, the average transmittance of the double-side coated sample increases by about 26% and its maximum reaches about 98%. To improve the mechanical hardness, a bilayer of Y2O3/carbon was deposited on the coating. Nanoindentation test shows that the coating enhances the mechanical properties. The final coating have successfully passed durability and environmental tests.  相似文献   
2.
In this paper, quaternary chalcogenide Cu2FeSnS4 (CFTS) thin films were synthesized by spray pyrolysis using multilayer deposition technique in which the number (N) of sequential deposition runs (DR) is N = 1, 2, 3 and 4. The delivered volume in each sample is (N × 300 ml). Correspondingly, samples are named CFTS-N. Chemical composition, morphological, structural, optical and electrical properties were characterized using dispersive X-ray spectrometry (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, spectrophotometer and Hall Effect measurements. XRD and Raman spectroscopy show a purer phase and better crystalline quality of CFTS-3 than other films. Average particle size increases with DR and reaches a maximum value of about 60 nm for N = 3. Optical results show high absorption coefficient value about 105 cm−1 in visible range, with an optical band gap of about 1.47 eV. Electrical resistivity of CFTS-3 equals to 5.82 10−3 Ω cm which is the lowest value of these four samples. We have investigated the photocatalysis activity of various thin films by measuring the degradation of methylene blue (MB) and Rhodamine (RhB) as pollutant dyes. In particular we have compared the candidates: CFTS-3/SnO2:F, CFTS-3/In2S3 and CFTS-3/In2S3/SnO2:F. Under sun light irradiation, CFTS-3/In2S3/SnO2:F heterojunction exhibits the best photodegradation rate (96%) of MB dye.  相似文献   
3.
Dynamic load is applied to a functionally graded material with penny-shaped cracks. The materials are also transversely isotropic depending only on the axial coordinate z. The elastic region may be regarded to consist of many thin layers such that properties are constants within each layer, but they may vary from layer to layer. Laplace and Hankel transform are used in conjunction with the stiffness matrix approach. The Dual integral equations are then obtained by application of appropriate boundary and interface conditions. Stress intensity factors are then determined in the Laplace transform domain. Inversion yields the results in the time domain. Numerical examples show that multiple crack configurations in functionally graded materials can be treated where the continuously varied material properties can be divided into a finite number of layers with different properties.  相似文献   
4.
In the first part of this work [Dallot, J., Sab, K., 2007. Limit analysis of multi-layered plates. Part I: the homogenized Love-Kirchhoff model. J. Mech. Phys. Solids, in press, doi:10.1016/j.jmps.2007.05.005], the limit analysis of a multi-layered plastic plate submitted to out-of-plane loads was studied. The authors have shown that a homogeneous equivalent Love-Kirchhoff plate can be substituted for the heterogeneous multi-layered plate, as the slenderness (length-to-thickness) ratio goes to infinity. In fact, the out-of-plane shear stresses are shown to become asymptotically negligible when compared to in-plane stresses, as the slenderness ratio goes to infinity. Actually, failure of thick multi-layered structures often occurs by shearing in the core layers and sliding at the interfaces between the layers. Both shearing and sliding are caused by the out-of-plane shear stresses. The purpose of the present paper is to build an enhanced Multi-particular Model for Multi-layered Material (M4) taking into account shear stress effects. In this model, each layer is seen as a Reissner-Mindlin plate interacting with its neighboring layers through interfaces. The proposed model is asymptotically consistent with the homogenized Love-Kirchhoff model described in the first part of the work, as the slenderness ratio goes to infinity. Kinematic and static methods for the determination of the limit load of a thick multi-layered plate which is submitted to out-of-plane distributed forces are described. The special case of multi-layered plates under cylindrical bending conditions is studied. These conditions lead to simplifications which often allow for the analytical resolution of the Love-Kirchhoff and the M4 limit analysis problems. The benefit of the proposed M4 model is demonstrated on an example. A comparison between the heterogeneous 3D model, the Love-Kirchhoff model and the M4 model is performed on a three-layer sandwich plate under cylindrical bending conditions. Finite element calculations are used to solve the 3D problem, while both the Love-Kirchhoff and the M4 problems are analytically solved. It is shown that, when the contrast between the core and the skins strengths is high, the Love-Kirchhoff model fails to capture the plastic collapse modes that cause the ruin of the sandwich plate. These modes are well captured by the M4 model which predicts limit loads that are very consistent with the limit loads predicted by the heterogeneous 3D model (the relative error is found to be smaller than 1%).  相似文献   
5.
《Current Applied Physics》2019,19(7):804-810
Multi-layered structures, composed of thin films from materials with different compositions or physical properties, represents a way to obtain enhanced properties or even new functionalities. In this work, lead zirconate titanate PbZrxTi1-xO3 (PZT; x = 0.20, 0.52, 0.80) multilayers were grown by pulsed laser deposition (PLD) on a single crystal strontium titanate (SrTiO3, STO) substrate, using a strontium ruthenate (SrRuO3, SRO) film as buffer layer for epitaxial growth, and also as back electrode.Up and down multi-layers were grown and their physical and structural properties were compared, up being the structure in which Zr concentration was varied from 20% near the STO substrate to 80% at the surface, while down is for the structure in which the Zr concentration starts with 80% near the substrate and ends with 20% at the surface. It was found that the electric and pyroelectric properties of the two graded structures are significantly different. The up structure presents electric properties that are comparable with those of single composition PZT films while the properties of the down structure are deteriorated, especially in terms of the leakage current magnitude. Pyroelectric signal could be measured only for the up structure. These differences were attributed to larger density of structural defects in the down structure compared to the up one. This is due to the different growth sequence: up structure starts with tetragonal PZT on cubic substrate (lower lattice mismatch, 1.1%) while down structure starts with rhombohedral PZT on cubic substrate (larger lattice mismatch, almost 5%).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号