首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   45篇
  国内免费   76篇
化学   437篇
晶体学   10篇
力学   53篇
综合类   2篇
数学   15篇
物理学   253篇
  2024年   3篇
  2023年   9篇
  2022年   14篇
  2021年   15篇
  2020年   28篇
  2019年   15篇
  2018年   5篇
  2017年   24篇
  2016年   35篇
  2015年   23篇
  2014年   15篇
  2013年   50篇
  2012年   26篇
  2011年   37篇
  2010年   29篇
  2009年   50篇
  2008年   36篇
  2007年   43篇
  2006年   43篇
  2005年   28篇
  2004年   38篇
  2003年   24篇
  2002年   21篇
  2001年   15篇
  2000年   15篇
  1999年   23篇
  1998年   21篇
  1997年   18篇
  1996年   8篇
  1995年   13篇
  1994年   10篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有770条查询结果,搜索用时 46 毫秒
1.
Traditionally, due to different hardware requirements, nuclear magnetic resonance (NMR) has developed as two separate fields: one dealing with solids, and one with solutions. Comprehensive multiphase (CMP) NMR combines all electronics and hardware (magic angle spinning [MAS], gradients, high power Radio Frequency (RF) handling, lock, susceptibility matching) into a universal probe that permits a comprehensive study of all phases (i.e., liquid, gel-like, semisolid, and solid), in intact samples. When applied in vivo, it provides unique insight into the wide array of bonds in a living system from the most mobile liquids (blood, fluids) through gels (muscle, tissues) to the most rigid (exoskeleton, shell). In this tutorial, the practical aspects of in vivo CMP NMR are discussed including: handling the organisms, rotor preparation, sample spinning, water suppression, editing experiments, and finishes with a brief look at the potential of other heteronuclei (2H, 15N, 19F, 31P) for in vivo research. The tutorial is aimed as a general resource for researchers interested in developing and applying MAS-based approaches to living organisms. Although the focus here is CMP NMR, many of the approaches can be adapted (or directly applied) using conventional high-resolution magic angle spinning, and in some cases, even standard solid-state NMR probes.  相似文献   
2.
A two-dimensional model for the simulation of a binary dendritic growth with convection has been developed in order to investigate the effects of convection on dendritic morphologies. The model is based on a cellular automaton (CA) technique for the calculation of the evolution of solid/liquid (s/l) interface. The dynamics of the interface controlled by temperature, solute diffusion and Gibbs–Thomson effects, is coupled with the continuum model for energy, solute and momentum transfer with liquid convection. The solid fraction is calculated by a governing equation, instead of some approximate methods such as lever rule method [A. Jacot, M. Rappaz, Acta Mater. 50 (2002) 1909–1926.] or interface velocity method [L. Nastac, Acta Mater. 47 (1999) 4253; L. Beltran-Sanchez, D.M. Stefanescu, Mat. and Mat. Trans. A 26 (2003) 367.]. For the dendritic growth without convection, mesh independency of simulation results is achieved. The simulated steady-state tip velocity are compared with the predicted values of LGK theory [Lipton, M.E. Glicksmanm, W. Kurz, Metall. Trans. 18(A) (1987) 341.] as a function of melt undercooling, which shows good agreement. The growth of dendrite arms in a forced convection has been investigated. It was found that the dendritic growth in the upstream direction was amplified, due to larger solute gradient in the liquid ahead of the s/l interface caused by melt convection. In the isothermal environment, the calculated results under very fine mesh are in good agreement with the Oseen–Ivanstov solution for the concentration-driven growth in a forced flow.  相似文献   
3.
This paper develops a mathematical model of the ring-spinning process that takes into account its non-stationary nature. A complex system of differential equations is obtained, which from a mathematical point of view constitutes a ‘free-boundary’ problem. Its solution involves definition of suitable boundary conditions related to the mechanical characteristics of the process and of the spinning machine itself. The boundary conditions which determine the solution are pointed out. A numerical solution of the system of differential equations can be obtained by the Finite-Segments method, as shown in an example.  相似文献   
4.
Spin-lattice relaxation mechanisms in kaolinite have been reinvestigated by magic-angle spinning (MAS) of the sample. MAS is useful to distinguish between relaxation mechanisms: the direct relaxation rate caused by the dipole-dipole interaction with electron spins is not affected by spinning while the spin diffusion-assisted relaxation rate is. Spin diffusion plays a dominant role in 1H relaxation. MAS causes only a slight change in the relaxation behavior, because the dipolar coupling between 1H spins is strong. 29Si relaxes directly through the dipole-dipole interaction with electron spins under spinning conditions higher than 2 kHz. A spin diffusion effect has been clearly observed in the 29Si relaxation of relatively pure samples under static and slow-spinning conditions. 27Al relaxes through three mechanisms: phonon-coupled quadrupole interaction, spin diffusion and dipole-dipole interaction with electron spins. The first mechanism is dominant, while the last is negligibly small. Spin diffusion between 27Al spins is suppressed completely at a spinning rate of 2.5 kHz. We have analyzed the relaxation behavior theoretically and discussed quantitatively. Concentrations of paramagnetic impurities, electron spin-lattice relaxation times and spin diffusion rates have been estimated.  相似文献   
5.
The montmorillonites (MMTs), layered, smectite-type silicates, were premodified by two different methods priorto the polymer melt intercalation. In one case MMTs were modified with cetyltrimethylammonium bromide (CTAB), andtermed as organomontmorillonites (OMMTs); in the other case MMTs were modified by nylon, and the products were calledmodified montmorillonites (MMMTs). The effects of CTAB and nylon on the MMTs were investigated by using TG andWAXD. The results show that interlayer spacings of CTAN and nylon modified MMTs are larger than that of sodium MMTs.Then, polyamide 66 (PA 66)/MMT nanocomposites were obtained through the method of melt intercalation of polymers. Thenanocomposites were characterized by WAXD, TEM and Molau experiments. The results indicate that the MMTs dispersehomogeneously in the PA 66 matrix. The mechanical properties of nanocomposites, such as tensile properties and flexuralproperties, were also measured and show a tendency to increase with increase of MMT content and reach the maximumvalues at 5phr MMT content. The heat distortion temperature (HDT) of the nanocomposites (7 phr) is about 32 K higher thanthat of pure PA 66.  相似文献   
6.
聚苯基膦酸双酚A酯的合成与表征   总被引:5,自引:0,他引:5  
聚苯基膦酸双酚A酯的合成与表征唐旭东陈晓婷王玉忠杨科珂王波(四川联合大学化学系成都610064)吴大诚(四川联合大学轻纺学院成都610065)关键词聚膦酸酯,阻燃剂,熔融缩聚,热性能聚膦酸酯类化合物是一类重要的磷系阻燃剂[1~3],与传统的非聚...  相似文献   
7.
A wholly-aromatic thermotropic liquid crystalline polymer (WATLCP) composed ofp-hydroxybenzoic acid (HBA), 4,4'-dihydroxy bisphenyl (BP), terephthalic acid (TPA),m-phthalic acid (MPA) was synthesized. It was symbolized by BP-LCP. Using a simi-lar method, a new copolymer BP-PSF was prepared. BP-PSF has a semi-flexible chainpolysulfone and a rigid-rod chain like BP-LCP. By FT-IR, polarizing microscope and DSCtechnique, the structures and properties of BP-LCP and BP-PSF were studied.  相似文献   
8.
利用高分辨魔角旋转核磁共振(MAS 1H NMR)技术对腹腔注射不同剂量[2, 10, 50 mg/kg(体重)]的硝酸镧[La(NO3)3]和硝酸铈[Ce(NO3)3] 的雄性Wistar大鼠肝、肾组织的MAS 1H NMR谱进行比较分析, 研究了La(NO3)3和Ce(NO3)3的急性生物效应, 并结合模式识别技术对不同剂量La(NO3)3和Ce(NO3)3的急性生物效应进行了分类. 研究结果表明, La(NO3)3对大鼠的急性毒性主要表现为肝毒, Ce(NO3)3对大鼠肝、肾同时造成损伤. 该方法可用于其它稀土及金属化合物的毒性预测和毒理学研究.  相似文献   
9.
The rheology of the melt hollow fiber spinning process is examined in the thin filament limit. The resulting thin filament equations are also applicable to single-phase and two-phase extensional flows. Using a novel numerical solution procedure, the sensitivity of the fiber spinning equations to material property and process variations is investigated. Fiber geometry is directly controlled by the mass flowrates of the core and clad fluids while the spinline tension is most strongly influenced by clad viscosity. A maximum can occur in the clad stress profile if a core liquid is used and the ratio of core to clad viscosity increases greatly with temperature. Isothermal spinning of high viscosity clad liquids with either a core gas or liquid is unstable for draw ratios greater than 20.2 as found for solid fibers.  相似文献   
10.
In this study, bubbles are held by centripetal force at the center of a rotating cylinder filled with an aqueous solution. Their velocities along the axe of rotation, after application of an electrophoretic force, are used for the calculation of the so-called electrokinetic potential. But this process necessitates the elimination of the electro-osmosis which occurs on the interior sides of the glass cylinder by superposing a concurrent force on the bubble. Efficiency of DEAE-Dextran reticulated with 1,4 Butanediol Diglycidyl Ether can be tested by the observation of a cloud of latex microspheres injected in the interior of the tube and allowed to move in respect with the application of an electric field. The experimental control of these velocity profiles proves the adequacy of the polymer for many cases such as surfactant solutions, presence of electrolytes, utilization with moderate pH.The dynamic interpretation of the electrophoretic motion of bubbles is possible by considering that small ones behave like rigid spheres moving in a rotating fluid. In the second part of this paper and in a previous publication, we have experimentally proved that the use of the theoretical expressions of the forces involved for rigid spheres is justified for small bubbles. So, the electrokinetic potential can be expressed versus the velocity, leading to possible interpretations of the adsorption on gas-water interfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号