首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
力学   15篇
数学   2篇
物理学   1篇
  2014年   1篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有18条查询结果,搜索用时 0 毫秒
1.
This paper discusses electromagnetic boundary conditions on crack faces in magneto- electroelastic materials, where piezoelectric, piezomagnetic and magnetoelectric effects are coupled. A notch of finite thickness in these materials is also addressed. Four idealized electromagnetic boundary conditions assumed for the crack-faces are separately investigated, i.e. (a) electrically and magnetically impermeable (crack-face), (b) electrically impermeable and magnetically permeable, (c) electrically permeable and magnetically impermeable, and (d) electrically and magnetically permeable. The influence of the notch thickness on important parameters, such as the field intensity factors, the energy release rate at the notch tips and the electromagnetic fields inside the notch, are studied and the results are obtained in closed-form. Results under different idealized electromagnetic boundary conditions on the crack-face are compared, and the applicability of these idealized assumptions is discussed.The project supported by the National Natural Science Foundation of China (10102004) The English text was polished by Yunming Chen.  相似文献   
2.
A general solution of the three-dimensional equilibrium problem of spherically isotropic magnetoelectroelastic media is presented. Base on the obtained general solution, exact and compact form solutions are obtained for (1) a spherically isotropic magnetoelectroelastic cone subjected to concentrated force, concentrated couple, a point charge and a point electric current at its apex; (2) a spherically isotropic magnetoelectroelastic space with a concentrated force at the origin; (3) a spherical shell under spherically symmetric deformation; and (4) stress concentration around a spherical cavity subjected to remote uniform tensile force, electric charge and electric current.  相似文献   
3.
The problem of a planar transversely isotropic magnetoelectroelastic layered half-plane subjected to generalized line forces and edge dislocations is analyzed. The complete solutions consist only of the simplest solutions for an infinite magnetoelectroelastic medium with applied loadings. The physical meaning of this solution is the image method. It is shown that the explicit solutions include Green's function for originally applied singularities in an infinite medium and the other image singularities are induced to satisfy free surface and interface continuity conditions. The mathematical method used in this study provides an automatic determination for the locations and magnitudes of all image singularities. The locations and magnitudes of image singularities are dependent on the roots of the characteristic equation which is related to the material constants of the layered half-plane. With the aid of the generalized Peach-Koehler formula, the explicit expressions of image forces acting on dislocations are easily derived from the full-field solutions of the generalized stresses. Numerical results for the full-field distributions of stresses, electric fields, and magnetic fields in the layered half-plane medium are presented based on the analytical solutions. The image forces and equilibrium positions of one dislocation, two dislocations, and an array of dislocations are presented by numerical calculations and are discussed in detail.  相似文献   
4.
Extending the polarization saturation model [Gao et al., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491-510] and the dielectric breakdown (DB) model [Zhang et al., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311-327] in piezoelectric materials, the Strip Electric-Magnetic Breakdown (SEMB) model is proposed for electrically and magnetically impermeable crack in a magnetoelectroelastic medium to study the effect of the nonlinear character of electric field and magnetic field on fracture of magnetoelectroelastic materials. In the SEMB model, the electric field in the strip of the electric breakdown zone ahead of the crack tip is equal to the electric breakdown strength, while the magnetic filed in the strip of the magnetic breakdown zone is equal to the magnetic breakdown strength. By using the extended Stroh formalism and the extended dislocation modeling of a crack, the Griffith crack problem under the electrically and magnetically elastic-plastic condition in a magnetoelectroelastic medium is reduced to a set of dual integral equations. The sizes of the electric breakdown zone and the magnetic breakdown zone, the extended intensity factors and the local J-integral are obtained. The effect of the combined mechanical-electric-magnetic loadings on the local J-integral is studied.  相似文献   
5.
For a crack in a magnetoelectroelastic plane under the electrically and magnetically semi-permeable boundary condition, we derive the non-linear analytical solution of the strip electric–magnetic polarization saturation (EMPS) model. Using the extended dislocation theory and integral equation method, we obtain the electric and magnetic yielding zones, as well as the field intensity factor and local J-integral. Adapting an iterative method, numerical examples were performed to analyze the effect of different boundary conditions and the electric–magnetic saturated properties on the electric displacement and magnetic induction in the crack cavity, electric and magnetic yielding zones, stress intensity factor and local J-integral.  相似文献   
6.
The three-dimensional field equations can in general be regarded as the sum of in-plane and out-of-plane deformation. The method for the general solution is the same for both although the boundary conditions could make a difference. If a particular solution in exact form may be found for the out-of-plane case, the same may not hold for the in-plane case. Hence, there may be a good reason for discussing the out-of-plane crack problem in certain situations that should be emphasized. Otherwise, the reason may lie in the exploration of possible application to the in-plane problem, a direct solution of which would have required a considerable effort. The contribution of this work rests on the new findings for the case of poling parallel to the crack in a magnetoelectroelastic composite made of BaTiO3–CoFe2O4. The inclusions are BaTiO3 and the matrix is CoFe2O4. Several new features of the solution were not expected before hand.Unlike in-plane deformation with poling normal to the crack plane, maximum crack growth enhancement is found to occur in the BaTiO3–CoFe2O4 composite for a volume fraction of about 50%. Crack retardation increases as the volume fraction of the inclusions either increase or decrease. The occurrence of this same phenomenon in Mode I and II remain to be investigated. Poling direction of magnetic and electric field for line defects can have a significant effect on crack growth for magnetoelectroelastic materials. The foregoing conclusions are based on predictions made from the strain energy density criterion.  相似文献   
7.
The order of the stress singularity of a magnetoelectroelastic bonded antiplane wedge is analyzed by complex potential function and eigenfunction expansion method. Contrary to the familiar problem of elastic anisotropic bonded wedges which always produce real values for the order of singularity, the results of the magnetoelectroelastic bonded wedges may be real or complex. Numerical results are presented for problems with different boundary conditions. In particular, special behaviors of the order of the stress singularity for some degenerate composite materials and for some special wedge angles are noted.  相似文献   
8.
Magnetoelectroelastic materials are inherently brittle and prone to fracture. Therefore, it is important to evaluate the fracture behavior of these advanced materials. In this paper, a periodic array of cracks in a transversely isotropic magnetoelectroelastic material is investigated. Hankel transform is applied to solve elastic displacements, electric potential and magnetic potential. The problem is reduced into a system of integral equations. Both impermeable and permeable crack-face electromagnetic boundary conditions assumptions are investigated. Quantities of the stress, electric displacement and magnetic induction and their intensity factor are obtained. Effect of the crack spacing on these quantities is investigated in details.  相似文献   
9.
T-stress as an important parameter characterizing the stress field around a cracked tip has attracted much attention. This paper concerns the T-stress near a cracked tip in a magnetoelectroelastic solid. By applying the Fourier transform, we solve the associated mixed boundary-value problem. Adopting crack-faces electromagnetic boundary conditions nonlinearly dependent on the crack opening displacement, coupled dual integral equations are derived. Then, the closed-form solution for the T-stress is obtained. A comparison of the T stresses for a cracked magnetoelectroelastic solid and for a cracked purely elastic material is made. Obtained results reveal that in addition to applied mechanical loading, the T-stress is dependent on electric and magnetic loadings for a vacuum crack.  相似文献   
10.
Based on the three-dimensional linear elastic equations and magnetoelectroelastic constitutive relations, propagation of symmetric and antisymmetric Lamb waves in an infinite magnetoelectroelastic plate is investigated. The coupled differential equations of motion are solved, and the phase velocity equations of symmetric and antisymmetric modes are obtained for both electrically and magnetically open and shorted cases. The dispersive characteristic of wave propogation is explored. The mechanical, electric and magnetic responses of the lowest symmetric and antisymmetric Lamb wave modes are discussed in detailed. Obtained results are valuable for the analysis and design of broadband magnetoelectric transducer using composite materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号