首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   1篇
力学   20篇
数学   4篇
  2023年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The application of optimal control theory to minimum weight design of continuous one-dimensional structural elements subject to eigenvalue constraints is discussed. If not only the value of an eigenvalue is prescribed but also its position in the sequence of the ordered eigenvalues—for example, the critical buckling load of a column—the corresponding optimal control problem is shown to include necessarily all eigenvalues. Considering the unspecified eigenvalues as free parameters, necessary conditions for minimum weight design are derived. These conditions are compared with those obtained by use of variational methods. Attention is focused on the special case of multimodal solutions.  相似文献   
2.
The imperfection sensitivity law by Koiter played a pivotal role in the early stage of research on initial post-buckling behaviors of structures, but seems somewhat overshadowed by numerical approaches in the computer age. In this paper, to make this law consistent with practical application, the law is extended to implement the influence of a number of imperfections, and the second-order (minor) imperfections are considered, in addition to the first-order (major) imperfections considered in the Koiter law. Explicit formulas are presented to be readily applicable to the numerical evaluation of imperfection sensitivity. A procedure to describe the probabilistic variation of critical loads is presented for the case where initial imperfections of structures are subject to a multivariate normal distribution; the formula for the probability density function of critical loads is derived by considering up to the second-order imperfections. The validity and usefulness of the present procedure are demonstrated through the application to truss structures.  相似文献   
3.
Antonio Desimone 《Meccanica》1995,30(5):591-603
The classical results of Stoner and Wohlfarth for the prediction of hysteresis loops in small ferromagnetic particles are extended to specimens of non-ellipsoidal shape, and shown to be a consequence of micromagnetics. The insensitivity to surface roughness is proposed as a possible explanation of the high coercivity behavior of small particles.
Sommario Si deducono i classici risultati di Stoner e Wohlfarth dalla teoria del micromagnetismo, e si dimostra la loro validità per la previsione di cicli di isteresi magnetica anche per particelle di forma non ellissoidale. Viene proposta, quale possibile spiegazione della notevole ampiezza dei cicli di isteresi caratteristici di particelle di piccole dimensioni, l'indifferenza alla presenza di rugosità superficiale.
  相似文献   
4.
This paper presents an analytical approach to investigate the non-linear axisymmetric response of functionally graded shallow spherical shells subjected to uniform external pressure incorporating the effects of temperature. Material properties are assumed to be temperature-independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. Equilibrium and compatibility equations for shallow spherical shells are derived by using the classical shell theory and specialized for axisymmetric deformation with both geometrical non-linearity and initial geometrical imperfection are taken into consideration. One-term deflection mode is assumed and explicit expressions of buckling loads and load-deflection curves are determined due to Galerkin method. Stability analysis for a clamped spherical shell shows the effects of material and geometric parameters, edge restraint and temperature conditions, and imperfection on the behavior of the shells.  相似文献   
5.
The multifold nature of structural instability problems necessitates a number of different kinds of analytical and numerical approaches. Furthermore, instability collapses of large-span roof sensitized the global community to reduce the effects of geometrical imperfections, then some limiting recommendations have been recently proposed. This study provides new insights into the interaction between the two different categories of structural instability and, for the first time, a unified theoretical evaluation of the critical load due to interaction is proposed. The snap-through phenomenon of 2D Von Mises arches was investigated by an incremental-displacement nonlinear analysis. At the same time, the equilibrium paths were considered in relation to the Eulerian buckling loads for the same structural systems. For each structural scheme the effect of the two governing parameters was investigated: slenderness and shallowness ratios. For these purposes, several original theoretical and numerical snap-through versus buckling interaction curves were obtained. These curves provide indications about the prevailing collapse mechanism with regards to the geometric configuration of the structure. Consequently, this innovative method is able to predict the actual instability of a wide range of mechanical systems. With this approach, it is possible also to establish the connection between the magnitude of structural imperfections (defects) and instability behavior. The proposed procedure is able to provide the effective critical load given by the interaction effect and to correlate the instability behavior to the maximum tolerable imperfection sizes.  相似文献   
6.
A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles.  相似文献   
7.
The vibration and buckling characteristics of sandwich plates having laminated stiff layers are studied for different degrees of imperfections at the layer interfaces using a refined plate theory. With this plate theory, the through thickness variation of transverse shear stresses is represented by piece-wise parabolic functions where the continuity of these stresses is satisfied at the layer interfaces by taking jumps in the transverse shear strains at the interfaces. The transverse shear stresses free condition at the plate top and bottom surfaces is also satisfied. The inter-laminar imperfections are represented by in-plane displacement jumps at the layer interfaces and characterized by a linear spring layer model. It is quite interesting to note that this plate model having all these refined features requires unknowns only at the reference plane. To have generality in the analysis, finite element technique is adopted and it is carried out with a new triangular element developed for this purpose, as any existing element cannot model this plate model. As there is no published result on imperfect sandwich plates, the problems of perfect sandwich plates and imperfect ordinary laminates are used for validation.  相似文献   
8.
《Applied Mathematical Modelling》2014,38(11-12):2848-2866
This paper presents an analytical investigation on the nonlinear response of thick functionally graded doubly curved shallow panels resting on elastic foundations and subjected to some conditions of mechanical, thermal, and thermomechanical loads. Material properties are assumed to be temperature independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. The formulations are based on higher order shear deformation shell theory taking into account geometrical nonlinearity, initial geometrical imperfection and Pasternak type elastic foundation. By applying Galerkin method, explicit relations of load-deflection curves for simply supported curved panels are determined. Effects of material and geometrical properties, in-plane boundary restraint, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the panels are analyzed and discussed. The novelty of this study results from accounting for higher order transverse shear deformation and panel-foundation interaction in analyzing nonlinear stability of thick functionally graded cylindrical and spherical panels.  相似文献   
9.
The load-bearing capacity of structures can be influenced by variations in parameters, such as initial geometric defects, multi-parameter loadings, material specifications and temperature. This paper aims to introduce a new formulation to trace the stability boundaries of two-parameter elastic structures. The proposed procedure can find a set of critical points, both limit and bifurcation ones, via a modified Newton’s method. In the authors’ formulation, the residual force is set to zero, and a critically constraint is satisfied simultaneously. Numerical examples presented in this paper demonstrate the efficiency of the suggested method.  相似文献   
10.
In this paper, post-buckling and nonlinear vibration analysis of geometrically imperfect beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to axial force are studied. The material properties of FGMs are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The assumptions of a small strain and moderate deformation are used. Based on Euler–Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this partial differential equation (PDE) problem, which has quadratic and cubic nonlinearities, is simplified into an ordinary differential equation (ODE) problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the imperfect functionally graded (FG) beams such as the effects of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogeneity are presented for future references. Results show that the imperfection has a significant effect on the post-buckling and vibration response of FG beams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号