首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
化学   8篇
力学   10篇
数学   1篇
物理学   46篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2011年   1篇
  2009年   3篇
  2008年   4篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2002年   10篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1984年   1篇
排序方式: 共有65条查询结果,搜索用时 218 毫秒
1.
An effective residual interaction between particles and holes for shell model calculations around 208Pb, derived from the interaction between free nucleons, is compared with the measured properties of proton-hole neutron states in 208Tl and the interaction between proton holes is adjusted to newly measured level energies in 206Hg. These interaction elements are particularly relevant for neutron-rich nuclei. The adjustment of two mixing elements reproduces the known γ-decay data in 208Tl. Received: 2 April 2002 / Accepted: 2 May 2002  相似文献   
2.
We study the propagation of the light mesons σ,ω,ρ, and a0(980) in dense hadronic matter in an extended derivative scalar coupling model. Within the scheme proposed it is possible to unambiguously define effective density-dependent couplings at the Lagrangian level. We first apply the model to study asymmetric nuclear matter with fixed isospin asymmetry, and then we pay particular attention to hypermatter in β-equilibrium. The equation of state and the potential contribution to the symmetry coefficient arising from the mean-field approximation are investigated. Received: 16 October 2001 / Accepted: 10 January 2002  相似文献   
3.
The high-resolution infrared absorption spectrum of the donor bending fundamental band ν of the homodimer (HCN)2 has been collected by long-path static gas-phase Fourier transform spectroscopy at 207 K employing the highly brilliant 2.75 GeV electron storage ring source at Synchrotron SOLEIL. The rovibrational structure of the ν transition has the typical appearance of a perpendicular type band associated with a Σ–Π transition for a linear polyatomic molecule. The total number of 100 assigned transitions are fitted employing a standard semi-rigid linear molecule Hamiltonian, providing the band origin ν0 of 779.05182(50) cm−1 together with spectroscopic parameters for the degenerate excited state. This band origin, blue-shifted by 67.15 cm−1 relative to the HCN monomer, provides the final significant contribution to the change of intra-molecular vibrational zero-point energy upon HCN dimerization. The combination with the vibrational zero-point energy contribution determined recently for the class of large-amplitude inter-molecular fundamental transitions then enables a complete determination of the total change of vibrational zero-point energy of 3.35±0.30 kJ mol−1. The new spectroscopic findings together with previously reported benchmark CCSDT(Q)/CBS electronic energies [Hoobler et al. ChemPhysChem. 19 , 3257–3265 (2018)] provide the best semi-experimental estimate of 16.48±0.30 kJ mol−1 for the dissociation energy D0 of this prototypical homodimer.  相似文献   
4.

The complexation of the salophen-uranyl metallocleft 2 and of its half-cleft analogue 3 with enones and other carbonyl compounds was assessed in chloroform by UV-Vis titration and, occasionally, by FT-IR measurements. Complexes with receptors 2 and 3 are in all cases more stable than those with the control unsubstituted uranyl-salophen 1 , showing that in addition to the primary binding force provided by coordination of the carbonyl oxygen to the uranium, a significant driving force for complexation, typically in the range of 2-3 kcal/mol, results from van der Waals interactions of the guest with the aromatic walls. Replacement of the phenyl group in 3 with larger aromatic residues to give 4 and 5 , led to enhanced complex stabilities, due to more extended contact surfaces between host and guest.  相似文献   
5.
We computed ground-state energies of calcium isotopes from 42Ca to 48Ca by means of the Auxiliary Field Diffusion Monte Carlo (AFDMC) method. Calculations were performed by replacing the 40Ca core with a mean-field self-consistent potential computed using the Skyrme interaction. The energy of the external neutrons is calculated by projecting the ground state from a wave function built with the single-particle orbitals computed in the self-consistent external potential. The shells considered were the 1F 7/2 and the 1F 5/2 . The Hamiltonian employed is semi-realistic and includes tensor, spin-orbit and three-body forces. While absolute binding energies are too deep if compared with experimental data, the differences between the energies for nearly all isotopes are in very good agreement with the experimental data.  相似文献   
6.
We address the problem of two pairs of fermions living on an arbitrary number of single-particle levels of a potential well (mean field) and interacting through a pairing force in the framework of the Richardson equations. The associated solutions are classified in terms of a number vl, which reduces to the seniority v in the limit of a large pairing strength G and yields the number of pairs not developing a collective behaviour, their energy remaining finite in the G limit. We express analytically, through the moments of the single-particle levels distribution, the collective mode energy and the two critical values Gcr+ and Gcr- of the coupling which can exist on a single-particle level with no pair degeneracy. Notably Gcr+ and Gcr-, when the number of single particle levels goes to infinity, merge into the critical coupling of a one-pair system Gcr (when it exists), which is not envisioned by the Richardson theory. In correspondence of Gcr, the system undergoes a transition from a mean-field- to a pairing-dominated regime. We finally explore the behaviour of the excitation energies, wave functions and pair transfer amplitudes versus G finding out that the former, for G > Gcr-, come close to the BCS predictions, whereas the latter display a divergence at Gcr, signaling the onset of a long-range off-diagonal order in the system.  相似文献   
7.
8.
The discovery more than twenty years ago, by the EMC Collaboration, that the deep-inelastic-scattering DIS structure functions are influenced by the nuclear environment stunned the nuclear physics community and brought quarks and gluons into the field with great impact. A great length of time has passed, but despite a semi-infinite number of papers on the subject, there is no explanation that is universally accepted. Many models (related in one way or another to QCD) have been successful in reproducing data for deep inelastic scattering on nuclear targets, but fewer have described both the DIS and nuclear Drell-Yan experiments. Although there are some positive indications, no model has been used to predict correctly and unambiguously new independent phenomena. We review the history and discuss the best experimental prospects for future discovery.  相似文献   
9.
We critically review the present relativistic mean-field theory from the viewpoint of missing pions. We introduce the interesting experimental data on pionic states taken at RCNP. These data seem to suggest the occurrence of pion condensation in the nuclear surface. Qualitative discussion is made on the consequence of surface pion condensation on Gamow-Teller transitions and spin response functions and others. The radioactive ion beams are the tools of studying the unstable nuclei, which have extended nuclear surfaces. We shall start with radioactive ion beams the nuclear surface science, which includes the surface pion condensation as the important ingredient in addition to spin-orbit splitting and surface pairing. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   
10.
In aqueous solutions, dissolved ions interact strongly with the surrounding water and surfaces, thereby modifying solution properties in an ion-specific manner. These ion-hydration interactions can be accounted for theoretically on a mean-field level by including phenomenological terms in the free energy that correspond to the most dominant ion-specific interactions. Minimizing this free energy leads to modified Poisson-Boltzmann equations with appropriate boundary conditions. Here, we review how this strategy has been used to predict some of the ways ion-specific effects can modify the forces acting within and between charged interfaces immersed in salt solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号