首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
力学   6篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
A phenomenological method has been used to derive a nonlinear constitutive relationship that can be used in conjunction with any eddy-viscosity model utilizing the elliptic relaxation method. While retaining the merits of the elliptic relaxation to model near-wall turbulence, the new model also enables the turbulence anisotropy to be faithfully predicted in wall-bounded flows.  相似文献   
2.
This paper presents a manufactured solution (MS), resembling a two-dimensional, steady, wall-bounded, incompressible, turbulent flow for RANS codes verification. The specified flow field satisfies mass conservation, but requires additional source terms in the momentum equations. To also allow verification of the correct implementation of the turbulence models transport equations, the proposed MS exhibits most features of a true near-wall turbulent flow. The model is suited for testing six eddy-viscosity turbulence models: the one-equation models of Spalart and Allmaras and Menter; the standard two-equation k–ε model and the low-Reynolds version proposed by Chien; the TNT and BSL versions of the k–ω model.  相似文献   
3.
A new approach to sensitize turbulence closures based on the linear eddy-viscosity hypothesis to rotational effects is proposed. The principal idea is to ‘mimic' the behavior of a second moment closure (SMC) in rotating homogeneous shear flow; depending on the ratio of the mean flow to the imposed rotational time scales, the model should be able to bifurcate between two stable equilibrium solutions. These solutions correspond to exponential or algebraic time dependent growth or decay of turbulent kinetic energy. This fundamental behavior of SMCs is believed to be of importance also in the prediction of non-equilibrium turbulence. A near-wall turbulence model which is based on the linear eddy-viscosity hypothesis is modified in the present study. Wall proximity effects are modeled by the elliptic relaxation approach. This closure has been successfully applied in the computation of complex, non-equilibrium flows in inertial frames of reference. The objective of the present study is to extend the predictive capability of the model to include flows dominated by rotational effects. The new model is calibrated in rotating homogeneous turbulent shear flow and subsequently tested in three different cases characterized by profound effects of system rotation or streamline curvature. It is able to capture many of the effects due to imposed body forces that the original closure is incapable of. Good agreement is obtained between the present predictions and available experimental and DNS data.  相似文献   
4.
内锥流量计流出系数预测方法研究   总被引:4,自引:1,他引:3  
采用标准k-ε模型、RNG(Renormalization Group)k-ε模型、Realizable k-ε模型和Reynolds应力方程模型 RSM(Reynolds Stress Model) 对100 mm口径6种结构的内锥流量计内流场进行了数值模拟.在等效直径比β值为0.65的三种结构内锥流量计流出系数的仿真计算中,四种湍流模型计算结果与物理实验结果误差的平均值分别为4.19%,2.84%,2.88%和-0.822%;对β值为0.85的情况,各模型计算误差的平均值分别为11.8%,9.62%,9.30%和4.76%.研究结果表明,RSM模型在6种结构内锥流量计流出系数的预测中,计算精度较高,表现出了较好的性能,优于三种k-ε涡粘模型,更适于内锥流量计流场数值模拟与流出系数的预测.  相似文献   
5.
In this paper a one-way coupling between the nonlinear v 2 − f model by Pettersson Reif (Flow Turbul Combust 76:241–256, 2006) and an algebraic structure-based model have been investigated. Comparisons with available experimental and numerical data indicate that the compatibility between the two models is good and that their joint performance is satisfactory in the cases considered here. A full coupling between the models seems therefore a potentially viable route towards a significant advancement of engineering turbulence models and their predictive capabilities.  相似文献   
6.
Regularization models for the turbulent stress tensor are applied to mixing and separated boundary layers. The Leray and the NS-α models in large-eddy simulation (LES) are compared to direct numerical simulation (DNS) and (dynamic) eddy-viscosity models. These regularization models are at least as accurate as the dynamic eddy-viscosity model, and can be derived from an underlying dynamic principle. This allows one to maintain central transport properties of the Navier-Stokes equations in the model and to extend systematically toward complex applications. The NS-α model accurately represents the small-scale variability, albeit at considerable resolution. The Leray model was found to be much more robust, allowing simulations at high Reynolds number. Leray simulations of a separated boundary layer are shown for the first time. The strongly localized transition to turbulence that arises under a blowing and suction region over a flat plate was captured accurately, quite comparable to the dynamic model. In contrast, results obtained with the Smagorinsky model, either with or without Van Driest damping, yield considerable errors, due to its excessive dissipation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号