首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   15篇
  国内免费   5篇
力学   160篇
数学   9篇
物理学   39篇
  2022年   4篇
  2021年   2篇
  2020年   9篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   14篇
  2015年   9篇
  2014年   19篇
  2013年   16篇
  2012年   18篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   11篇
  2004年   7篇
  2003年   12篇
  2002年   1篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
1.
This paper proposes a fully three‐dimensional non‐linear Euler methodology for solving aerodynamic and acoustic problems in the presence of strong shocks and rarefactions. It uses a discontinuous Galerkin method (DGM) within the element, and a Riemann solver (HLLC) at the boundaries to propagate rarefactions while preserving the entropy condition and capturing shocks with no spurious oscillations. This approach is thought to marry the best aspects of finite element and finite volume methods, achieving conservation while not requiring the solution of a large matrix. Examples in which shock and rarefaction waves are well captured are presented and the propagation of acoustic pulses is well demonstrated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
I survey highlights of the practice of physics and allied sciences in Melbourne,Australia, from the 1850s, soon after Europeans first settled in the area, to the present. I note recognizable sites of past and current physical-science activity that may be visited, as well as exhibits of historic items of physics apparatus. I trace the role of physics, in the course of a century and a half, in the evolution of a pioneering settlement into a large city embedded in a modern industrial economy.  相似文献   
3.
针对近地轨道飞行器所面临的上层大气层(100~300 km)空气动力学问题,对几类典型航天器构型的上层大气层气动力特性进行了分析,给出了典型气动布局在该空域的气动力基本规律,取得了对上层大气层气动力关键影响因素的初步认识.在上层大气层,飞行器的绕流属于自由分子流状态.研究发现,气体分子与不同材质物面的相互作用反映出截然...  相似文献   
4.
Robust design problems in aerodynamics are associated with the design variables, which control the shape of an aerodynamic body, and also with the so‐called environmental variables, which account for uncertainties. In this kind of problems, the set of design variables, which leads to optimal performance, taking into account possible variations in the environmental variables, is sought. One of the possible ways to solve this problem is by means of the second‐order second‐moment approach, which requires first‐order and second‐order derivatives of the objective function with respect to the environmental variables. Should the minimization problem be solved using a gradient‐based method, algorithms for the computation of up to third‐order sensitivity derivatives (twice with respect to the environmental variables and once with respect to the shape controlling design variables) must be devised. In this paper, a combination of the continuous adjoint variable method and direct differentiation to compute the third‐order sensitivities is proposed. This is shown to be the most efficient among all alternative methods provided that the environmental variables are much less than the design ones. Apart from presenting the method formulation, this paper focuses on the assessment of the so‐computed up‐to third‐order mixed derivatives through comparison with costly finite‐difference schemes. To this end, the robust design of a two‐dimensional duct is performed. Then, using the validated method, the robust design of a two‐dimensional cascade airfoil is demonstrated. Although both cases are handled as inverse design problems, the method can be extended to other objective functions or three‐dimensional problems in a straightforward manner. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
A finite point method for solving compressible flow problems involving moving boundaries and adaptivity is presented. The numerical methodology is based on an upwind‐biased discretization of the Euler equations, written in arbitrary Lagrangian–Eulerian form and integrated in time by means of a dual‐time steeping technique. In order to exploit the meshless potential of the method, a domain deformation approach based on the spring network analogy is implemented, and h‐adaptivity is also employed in the computations. Typical movable boundary problems in transonic flow regime are solved to assess the performance of the proposed technique. In addition, an application to a fluid–structure interaction problem involving static aeroelasticity illustrates the capability of the method to deal with practical engineering analyses. The computational cost and multi‐core performance of the proposed technique is also discussed through the examples provided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
In this wind-tunnel based experimental study, the flow topology of the near wake of a generic anatomically accurate model cyclist is mapped for a range of reduced pedalling frequencies. Wake flow fields for both static leg and pedalling cyclists are compared over the full 360° rotation of the crank using both time- and phase-averaging. The primary wake flow structures and aerodynamic forces are quantified and analysed under dynamic pedalling conditions representative of an elite-level time-trial cyclist. Over the range of reduced pedalling frequencies studied, only minor variation was detected between the instantaneous drag and primary vortical structures of a pedalling cyclist compared to a stationary cyclist with the pedals in the same position. A simplified model of the aerodynamic forces acting on the legs under motion is presented to provide insight into how the motion of the legs influences aerodynamic drag. A comparison of predicted forces from this model with those from experiments provides a new perspective on how the aerodynamics of cyclists may be optimised.  相似文献   
8.
A greedy method for choosing an optimum reduced set of control points is integrated with RBF interpolation and evaluated for the purpose of interpolating large‐volume data sets in CFD. Given a function defined at a set of points, the greedy method selects a small subset of these points that is sufficient to keep the interpolation error at all the remaining points below a chosen bound. This is equivalent to a type of data compression and would have useful storage, post‐processing, and computational applications in CFD. To test the method in terms of both the point selection scheme and the suitability of reduced control point volume interpolation, a trial application of the interpolation to velocity fields in CFD volume meshes is considered. To optimise the point selection process, and attempt to be able to capture multiple length scales, a variable support radius formulation has also been included. Structured and unstructured mesh cases are considered for aerofoils, a wing case and a wing‐body case. For smooth volume functions, the method is shown to work well, producing accurate velocity interpolations using a very small number of the cells in the mesh. For general complex fields including large gradients, the method is still shown to be effective, although large gradients require more interpolation points to be used.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
9.
大气边界层的一些空气动力学特征   总被引:4,自引:0,他引:4  
胡非 《力学进展》1990,20(3):328-340
本文在定常和中性温度层结条件下,首先介绍了均匀平坦地面上大气边界层的一些空气动力学特征,并将大气边界层与一般空气动力学边界层作了比较。然后介绍了地面粗糙度分布有阶跃变化以及非平坦地形上的大气边界层特征。文中说明,气流的平均流场结构以及湍流特性与均匀平坦地面的情形相比有显著不同。最后,提出了一些有待今后进一步研究的问题。   相似文献   
10.
A simple and efficient time-dependent method is presented for solving the steady compressible Euler and Navier–Stokes equations with third-order accuracy. Owing to its residual-based structure, the numerical scheme is compact without requiring any linear algebra, and it uses a simple numerical dissipation built on the residual. The method contains no tuning parameter. Accuracy and efficiency are demonstrated for 2-D inviscid and viscous model problems. Navier–Stokes calculations are presented for a shock/boundary layer interaction, a separated laminar flow, and a transonic turbulent flow over an airfoil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号