首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
力学   18篇
数学   4篇
物理学   3篇
  2023年   1篇
  2020年   2篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2005年   1篇
  1994年   1篇
排序方式: 共有25条查询结果,搜索用时 218 毫秒
1.
The goal of the present experimental study is to investigate the ability of surface DBD plasma actuators to delay flow separation along the suction side of a NACA0015 airfoil. Three single surface DBD actuators that can operate separately are mounted on the suction side of the profile, at 18%, 27% and 37% of the chord length. The boundary layer is transitioned by a tripper to be sure that the flow control is not due to the laminar-to-turbulent transition. The angle of attack is equal to 11.5° and the free-stream velocity to U0 = 40 m/s, resulting in a chord-based Reynolds number of Rec = 1.33 × 106. The flow is studied with a high-resolution PIV system. In such conditions, the baseline flow separation occurs at 50% of chord. Then, the different single DBD have been switched on separately, in order to investigate the actuator location effect. One highlights that the DBD located at xc/c = 18% is more effective than the two others ones, with a separation delay up to 64% of chord. When the three DBDs operate simultaneously, the separation point moves progressively toward the trailing edge when the high voltage is increased, up to 76% of chord at 20 kV. Finally, the effect of the actuation frequency on the control authority has been investigated, by varying the value of the operating frequency and by burst-modulation. For frequencies equal to 50 Hz and 500 Hz (reduced frequency F+ = 0.31 and 3.1), the separation has been delayed at 76 and 80% of chord, respectively.  相似文献   
2.
By the finite element method combined with Arbitrary-Lagrangian-Eulerian (ALE) frame and explicit Characteristic Based Split Scheme (CBS), the complex flows around stationary and sinusoidal pitching airfoil are studied numerically. In particular, the static and dynamic stalls are analyzed in detail, and the natures of the static stall of NACA0012 airfoil are given from viewpoint of bifurcations. Following the bifurcation in Map, the static stall is proved to be the result from saddle-node bifurcation which involves both the hysteresis and jumping phenomena, by introducing a Map and its Floquet multiplier, which is constructed in the numerical simulation of flow field and related to the lift of the airfoil. Further, because the saddle-node bifurcation is sensitive to imperfection or perturbation, the airfoil is then subjected to a perturbation which is a kind of sinusoidal pitching oscillation, and the flow structure and aerodynamic performance are studied numerically. The results show that the large-scale flow separation at the static stall on the airfoil surface can be removed or delayed feasibly, and the ensuing lift could be enhanced significantly and also the stalling incidence could be delayed effectively. As a conclusion, it can be drawn that the proper external excitation can be considered as a powerful control strategy for the stall. As an unsteady aerodynamic behavior of high angle of attack, the dynamic stall can be investigated from viewpoint of nonlinear dynamics, and there exists a rich variety of nonlinear phenomena, which are related to the lift enhancement and drag reduction.  相似文献   
3.
4.
The present paper investigates the fluid–structure interaction (FSI) of a wing with two degrees of freedom (DOF), i.e., pitch and heave, in the transitional Reynolds number regime. This 2-DOF setup marks a classic configuration in aeroelasticity to demonstrate flutter stability of wings. In the past, mainly analytic approaches have been developed to investigate this challenging problem under simplifying assumptions such as potential flow. Although the classical theory offers satisfying results for certain cases, modern numerical simulations based on fully coupled approaches, which are more generally applicable and powerful, are still rarely found. Thus, the aim of this paper is to provide appropriate experimental reference data for well-defined configurations under clear operating conditions. In a follow-up contribution these will be used to demonstrate the capability of modern simulation techniques to capture instantaneous physical phenomena such as flutter. The measurements in a wind tunnel are carried out based on digital-image correlation (DIC). The investigated setup consists of a straight wing using a symmetric NACA 0012 airfoil. For the experiments the model is mounted into a frame by means of bending and torsional springs imitating the elastic behavior of the wing. Three different configurations of the wing possessing a fixed elastic axis are considered. For this purpose, the center of gravity is shifted along the chord line of the airfoil influencing the flutter stability of the setup. Still air free-oscillation tests are used to determine characteristic properties of the unloaded system (e.g. mass moment of inertia and damping ratios) for one (pitch or heave) and two degrees (pitch and heave) of freedom. The investigations on the coupled 2-DOF system in the wind tunnel are performed in an overall chord Reynolds number range of 9.66×103Re8.77×104. The effect of the fluid-load induced damping is studied for the three configurations. Furthermore, the cases of limit-cycle oscillation (LCO) as well as diverging flutter motion of the wing are characterized in detail. In addition to the DIC measurements, hot-film measurements of the wake flow for the rigid and the oscillating airfoil are presented in order to distinguish effects originating from the flow and the structure.  相似文献   
5.
The present paper describes the applicability of the active flow control device, mini electromagnetic flap actuators attached on the leading edge of an airfoil, for the flow separation under both the steady and the unsteady flow conditions in the low Reynolds number region. At first, lift and drag have been measured for a wide variety of the wind speed Reynolds numbers and the angles of attack for the steady flow condition. Then, effects of some simple feedback flow controls, where the time-dependent signal of the lift-drag ratio have been used to detect the stall and served as a trigger to start the actuation, have been explored under the unsteady flow condition for evading the stall. In every low Reynolds number ranging from 30 000 to 80 000, the present actuators worked quite well to delay the stall, increasing in the lift and delaying the stall angle of attack. These aerodynamic modifications by the flap actuators obtained from the steady flow were found to be available even if the manipulation of the actuators started after the stall. Activation threshold of the lift-drag ratio as the input for the feedback control was determined from a stall classification map obtained under the steady flow experiment. Effectiveness of this feedback control was then demonstrated under the condition of the wind speed decrease (Reynolds number from 80 000 to 40 000) keeping the angle of attack constant at 11°, at which the stall occurs without the active control. Immediately after the sudden velocity decrease, the decrease in the lift-drag ratio were detected and the dynamic actuations were successfully started, resulting in evading the stall and keeping high and stable lift. An additional operation of the feedback, in which the running actuation is turned off when the lift-drag ratio shows lower than the second threshold value after operation, was revealed to be effective to keep the high lift force under the condition combined with the wind speed increase and decrease within the low Reynolds number range treated in this study.  相似文献   
6.
Airfoil performance degradation in heavy rain has attracted many aeronautical researchers’ eyes. In this work, a two-way momentum coupled Eulerian–Lagrangian approach is developed to study the aerodynamic performance of a NACA 0012 airfoil in heavy rain environment. Scaling laws are implemented for raindrop particles. A random walk dispersion approach is adopted to simulate raindrop dispersion due to turbulence in the airflow. Raindrop impacts, splashback and formed water film are modeled with the use of a thin liquid film model. The steady-state incompressible air flow field and the raindrop trajectory are calculated alternately through a curvilinear body-fitted grid surrounding the airfoil by incorporating an interphase momentum coupling term. Our simulation results of aerodynamic force coefficients agree well with the experimental results and show significant aerodynamic penalties at low angles of attack for the airfoil in heavy rain. An about 3° rain-induced increase in stall angle of attack is predicted. The loss of boundary momentum by raindrop splashback and the effective roughening of the airfoil surface due to an uneven water film are testified to account for the degradation of airfoil aerodynamic efficiency in heavy rain environment.  相似文献   
7.
The paper is the numerical counterpart of the experimental investigation on the fluid–structure interaction (FSI) of a wing with two degrees of freedom (DOF), i.e., pitch and heave. Wood et al. (2020) has provided the experimental basis by studying the flutter stability of an elastically mounted straight wing (NACA 0012 airfoil) in a wind tunnel considering the transitional Reynolds number regime. Three different configurations with varying distances between the fixed elastic axis and the variable center of gravity were considered. Additional free-oscillation tests in still air were carried out in order to make the mechanical properties of the setup available for the simulations. The present contribution describes the numerical methodology applied consisting of a partitioned coupled solver combining eddy-resolving large-eddy simulations on the fluid side with a solver for the governing equations of the translation and rotation of the rigid wing. In order to prove the parameters provided by the experiment and to determine the pure material damping coefficients not available from the measurements, simulations of 1-DOF free-oscillation tests in still air are carried out and analyzed. For validation purposes the corresponding 2-DOF free-oscillation tests in still air are assessed and a good agreement with the experimental data is achieved. Finally, the wing exposed to a constant free-stream of varying strength is analyzed leading to the characterization of complex instantaneous FSI phenomena such as limit-cycle oscillations and flutter. Under full utilization of the supplementary measurements the predictions are evaluated in detail. Contrary to the experiments the simulations provide the entire fluid data and unique data for the translatory and rotatory movement allowing to investigate the causes of the observed phenomena. Both limit-cycle oscillations and flutter can be reproduced by the coupled FSI predictions.  相似文献   
8.
An active flow control experiment was conducted on a cropped NACA 0018 airfoil to study 3D effects and maneuverability aspects made possible by a segmented actuation system installed in the airfoil. The 14 piezo-fluidic actuators were installed at the corner of the cropped region, inclined at 30° to the local surface, facing downstream. Operating all actuators at unison significantly increased lift and generated a pitch-down moment. Operating all actuators at the same magnitude but varying the phase along the span generated larger lift-increment, with respect to the uniform phase excitation. Significant rolling moment can be generated when only half-span of the wing is actuated. The latter effect, as indicated by the 3D pressure distribution, persists to the leading edge even though the excitation was introduced close to the trailing edge. When a pair, out of the possible fourteen actuators is not operating, very little of the control authority is lost. This is an important finding when issues like fault tolerance and robustness of fluidic-piezo actuators are considered.  相似文献   
9.
This paper studies the delayed feedback control of flutter of a two-dimensional airfoil using a sliding mode control (SMC) method. The dynamic equation of airfoil flutter is firstly established using the Lagrange method, in which the cubic hardening spring nonlinearity of pitch stiffness is considered. Then, the state equation with time delay is transformed into a standard state equation with implicit time delay by a special integral transformation. Next a nonlinear time-delay controller is designed using the SMC method. Finally the effectiveness of the proposed controller is verified through numerical simulations. Simulation results indicate that time delay in the control system has significant influence on the control performance. Control failure may happen if time delay is not considered in control design. The time-delay controller proposed is effective in suppressing the airfoil flutter with either small or large control time delay.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号